1. (15 points) Let $f(x)= \begin{cases}x^{2} & \text { if } x<0 \\ \tan (x) & \text { if } 0 \leq x<\pi / 2 \\ \frac{1}{x-\pi / 2} & \text { if } x>\pi / 2\end{cases}$
(a) Graph f.
(b) Determine whether f is continuous at 0 . Fully justify your conclusion.
(c) Determine $\lim _{x \rightarrow \frac{\pi}{2}} f(x)$. Explain your answer.
2. (10 points) Sketch the graph of a single function f that satisfies all of the following conditions:

- f has domain $[0,4]$.
- f is continuous on $(0,2)$ and on $(2,4)$.
- $\lim _{x \rightarrow 2^{-}} f(x)=\infty$.
- $\lim _{x \rightarrow 2^{+}} f(x)=3$.

3. (20 points) Let $f(x)=3 x^{-2}+5$.
(a) Find a formula for $f^{\prime}(x)$.
(b) Find an equation for the line tangent to $y=f(x)$ at $x=6$.
4. (20 points) Suppose that f, g and h satisfy

$$
\begin{array}{lll}
f(3)=7 & g(3)=5 & h(3)=7 \\
\lim _{x \rightarrow 3} f(x)=2 & g \text { is continuous at } 3 & \lim _{x \rightarrow 3} h(x)=0^{-}
\end{array}
$$

Find the following quantities.
(a) $\lim _{x \rightarrow 3} \frac{1}{h(x)}$
(b) $\lim _{x \rightarrow 3} \cos (h(x))$
(c) $\lim _{x \rightarrow 3}\left(x^{2}+4\right) \sqrt{g(x)}$
(d) $\lim _{x \rightarrow 3}(5 f(x)+1)^{-2}$
5. ($\mathbf{2 0}$ points) Compute the following limits or explain why they do not exist. If the limit is infinite, you should state so.
(a) $\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x^{2}-49}$
(b) $\lim _{x \rightarrow \frac{\pi^{+}}{}} \sec (x)$
(c) $\lim _{x \rightarrow 0} x^{2} \cos (1 / x)$ (Hint: Use the Squeeze Theorem.)
(d) $\lim _{x \rightarrow 6} \frac{3 x-18}{|x-6|}$
6. (5 points) Graph $f(x)=\frac{\sin (x) \cos (x)}{\cos (x)}$ on the interval $[0,2 \pi]$.

7. (10 points)

(a) State the Intermediate Value Theorem.
(b) Show that the equation $\cos x=x$ has a root in the interval $[0, \pi]$.

