1. (9 points) Carefully state the following theorems, making sure you have the hypotheses correct.

- The Extreme Value Theorem
- The Mean Value Theorem
- Fermat's Theorem

2. (6 points) From which of the three theorems above can it be argued that if a drain pipe fills a 10 gallon bucket in 3 minutes, then at some point during that period the drain was flowing at rate of over 150 gallons per hour. Explain.
3. (15 points)
(a) If Newton's method, with initial value $x_{1}=4$, is used to approximate $\sqrt{8}$, the positive zero of $f(x)=x^{2}-8$, what are x_{2} and x_{3} ?
(b) Sketch the graph of $f(x)=x^{2}-8$. Show on your graph how Newton's Method constructs x_{2} from x_{1}.
4. (10 points) Show that the equation $3-5 x^{3}-6 x^{5}=0$ has exactly one solution. State any theorems you use.
5. (15 points) Find the following limits. Justify your conclusions.
(a) $\lim _{x \rightarrow \infty} \frac{x^{3 / 2}-2 x^{2}+1}{3 x^{2}-5 x^{3}}$
(b) $\lim _{x \rightarrow \infty}(3 x+1) \sin \left(\frac{1}{x}\right)$
(c) $\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+3 x+4}\right)$
6. (10 points) Let $f(x)=11 x+\frac{22}{x}-10$.
(a) Name the theorem that guarantees that f has both an absolute maximum and an absolute minimum on the interval $[-4,-1]$.
(b) Find the absolute maximum and absolute minimum of f on $[-4,-1]$.
7. (15 points) Use calculus to find the point on the curve $y=\sqrt{x}$ that is closest to the point $(0,108)$.
8. (20 points) Let $f(x)=\frac{x}{x^{3}-1}$.
(a) Find any vertical and horizontal asymptotes of the graph of f.
(b) Find the intervals of increase and decrease of f and all points $(a, f(x))$ for which $f(a)$ is a local maximum or a local minimum.
(c) Find the intervals on which f is concave upward and those on which it is concave downward. Find all inflection points $(b, f(b))$ of f.
(d) Sketch a good graph of f that plots all intercepts, local extrema, inflection points and vertical and horizontal asymptotes, and is consistent with all your answers above.
