Math 229

Mock Final Exam

Disclaimer: This mock exam is for practice purposes only. No graphing calulators \geq TI- 89 is allowed on this test. Be sure that all of your work is shown and that it is well organized and legible.

This exam's difficulty is on par with a Fall/Spring Final Exam. This also means this final exam is meant for a 1 hour and 50 minute exam. You have 1 hour and 15 minutes. So your exam will be shorter.

Since you were not tested on anti differentiation / integrals, your final exam will have a greater emphasis on this subject.

Good luck!

1. (10pts) True or False. Cirlce your answer.
(a) T F $f(x)=|x|$ is continuous at $x=0$
(b) T F $f(x)=|x|$ is differentiable at $x=0$
(c) T F $f(x)=\sqrt{x}$ is differentiable at $x=0$
(d) T F If a is a critical value of f, then f must have a maximum or minimum at $x=a$.
(e) T F If $f^{\prime \prime}(a)=0$, then a must be an inflection point.
2. (24 points) Find the following limits. If the limit is infinite, write ∞ or $-\infty$.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{x^{2}+4 x-12}$
(b) $\lim _{x \rightarrow 0} \frac{\sin (x)}{5 x+8 x^{2}}$
(c) $\lim _{x \rightarrow 6^{-}} \frac{x+6}{x(x-6)}$
(d) $\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+3 x}-2}{x-1}$
3. (10 points) Let

$$
f(x)= \begin{cases}-x^{2}, & \text { if } x<0 \\ \cos (x), & \text { if } 0 \leq x<\pi / 2 \\ x-\pi / 2, & \text { if } x \geq \pi / 2\end{cases}
$$

(a) Find $\lim _{x \rightarrow 0} f(x)$, if it exists.
(b) Is $f(x)$ continuous at $x=0$
(c) Is $f(x)$ continuous at $x=\pi / 2$
4. (10 points) Let $f(x)=\frac{-16}{x}$. Use the limit definition to find $f^{\prime}(2)$. No credit for any other method.
5. (8 points) Find the equation of the tangent line to the graph $f(x)=\cos (x)+x$ at the point $(0,1)$.
6. (8 points) Let $f(x)=3 x^{5}-5 x^{3}$. Use Newton's Method with thte initial approxiation $x_{1}=1.5$. Find x_{2} and x_{3}.
7. (8 points) In each part, the graph of a function is given. Draw a graph of the derivative of this function in the adjacent coordinate system.

(b)

8. (24 points) Find the derivative of the following functions. You do not need to simplify.
(a) $f(x)=\sqrt{\sin \left(x^{2}\right)}$
(b) $f(x)=(2 x+7)^{10}(5 x-3)^{4}$
(c) $f(x)=\frac{2 x^{6}-7 x+5}{x^{4 / 3}+x^{-1 / 2}}$
(d) $f(x)=\csc ^{2}(x)+x^{9}$
9. (8 points) Find $\frac{d^{2} y}{d x^{2}}$ if $y=x \sec (x)$
10. (6 points) Use implicit differentiation to find $\frac{d y}{d x}$ if $y+x^{3}+y^{3}=3.14159$
11. (10 points) Find the critical points of the function $f(x)=\frac{x^{2}-3}{x-2}$. Determine whether each critical point is a local maximum, minimum, or neither.
12. (6 points) Find the derivative $g^{\prime}(x)$ of the function $g(x)=\int_{5}^{x^{2}} \sqrt{1+t} d t$
13. (10 points) Sketch the graph of a funcon satisfying all of the following conditions, labeling all asymptotes, local extrema, and inflection points.
(a) Vertical asymptote at $x=1$
(b) Horizontal asymptote at $y=-2$
(c) x-intercepts $(0,0)$ and $(3,0)$
(d) $f(4)=-1$
(e) $f^{\prime}(x)>0$ if $x<3, x \neq 1$
(f) $f^{\prime}(x)<0$ if $x>3$
(g) $f^{\prime \prime}(x)>0$ if $x<1$ or $x>4$
(h) $f^{\prime \prime}(x)<0$ if $1<x<4$

14. (12 points) A plane is flying horizontally at an altitude of 1 mile and a speed of 500 miles per hour directly over a radar station. Find the rate at which the distance from the plane to the radar station is increasing when the plane is 2 miles from the station.
15. (12 points) Find two numbers x and y whose difference is 2500 and whose product is a minimum.
16. (6 points) Approximate $\int_{2}^{10} \frac{1}{1+x} d x$ using the Riemann Sumn with $n=4$ rectangles and right-hand endpoints.
17. (28 points) Compute the following integrals.
(a) $\int \frac{x^{6}-x^{2}}{x^{4}} d x$
(b) $\int_{0}^{\pi / 4} \frac{2 \tan (x)-3 \sec ^{3}(x)}{\sec (x)} d x$
(c) $\int \cos (x) \cdot \sin (\sin (x)) d x$
(d) $\int_{-1}^{2}|x| d x$

