
Brian E. Veitch

4 Integration

4.1 Areas and Distances

We begin Chapter 4 by trying to solve a simple question: given a function f(x) over an

interval (a, b), what is the area of the region under f between a and b?

If we had an easy region under a curve, that of a simple polygon, this question is easy to

answer – a rectangle has area base time height, a triangle is 1
2
bh, and many polygons can be

broken into a sum of triangles. But in our picture above, we have a curved top side, which

is not a polygon.

When we were looking for the slope of a tangent line, we took the limit of slopes of secant

lines – a limit of an approximation. We do the same here, approximating the area under the

curve using the easiest figure we have, the rectangle.

Example 4.1. Estimate the area under the curve y = x2 on (0, 2) with 4 rectangles.

Begin by drawing a picture of the function:
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Since we can put the curve entirely inside a rectangle of width 2 and height 4, of course

the area under the curve would be smaller than 2 · 4 = 8, but that’s so crap, we can do

better. Chop the region under the curve S into four strips, S1, ..., S4 by drawing three evenly

spaced vertical lines x = 1
2
, x = 1 and x = 3

2
.

Then, we can make an approximation of this area of these four strips by creating rectan-

gles. One way to do this is to extend the upper-right corner of each strip until we reach the

next vertical line, a rectangle whose height is the same as the right edge. Since the function

is f(x) = x2, the height of these rectangles will just be the value of f(x) when evaluated at

the right endpoint of the intervals [0, 1/2], [1/2, 1], [1, 3/2], [3/2, 2].

Each rectangle has a width of 1/2, and if we let Ai be the area of the i-th rectangle, we get
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A1 = f

(
1

2

)
·
(

1

2

)
=

(
1

2

)2

·
(

1

2

)
=

1

8

A2 = f (1) ·
(

1

2

)
= (1)2 ·

(
1

2

)
=

1

2

A3 = f

(
3

2

)
·
(

1

2

)
=

(
3

2

)2

·
(

1

2

)
=

9

8

A4 = f (2) ·
(

1

2

)
= (2)2 ·

(
1

2

)
= 2

R4 =
1

8
+

1

2
+

9

8
+ 2 =

15

4
.

Now because we counted alot of area above the curve in this approximation, we know

that

A < R4 =
15

4
.

However, this is not the only approximation we could do. Instead of extending the upper-

right corner, we could extend the upper-left corner and create rectangles that way. If the

heights of the rectangles are equal to the function evaluated at the left endpoint, we would

have the following picture:
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These rectangles still have width 1/2, but if we let the area of all four be L4, then we

again add base times height 4 times:

L4 =

(
1

2

)
(0)2 +

(
1

2

)
·
(

1

2

)2

+

(
1

2

)
· (1)2 +

(
1

2

)
·
(

3

2

)2

=
7

4

Just as the area of A was smaller then R4, we know that the area of A is larger than L4, so

L4 =
7

4
< A.

Combining these, we have upper and lower bounds on the area of S:

7

4
< S <

15

4
.

We could repeat this procedure with more and more rectangles, and the smaller the width

of the rectangle it makes sense that the approximation will get better.

Example: Let’s go ahead and try to estimate the area under y = x2 on [0,2], but with

8 rectangles. We’ll see if we get a better estimate.
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1. Using the right hand endpoints

Each rectangle has a width of 1/4, and if we let Ai be the area of the i-th rectangle, we get

A1 = f

(
1

4

)
·
(

1

4

)
=

(
1

4

)2

·
(

1

4

)
= 0.015625

A2 = f

(
2

4

)
·
(

1

4

)
=

(
2

4

)2

·
(

1

4

)
= 0.0625

A3 = f

(
3

4

)
·
(

1

4

)
=

(
3

4

)2

·
(

1

4

)
= 0.140625

A4 = f

(
4

4

)
·
(

1

4

)
=

(
4

4

)2

·
(

1

4

)
= 0.25

A5 = f

(
5

4

)
·
(

1

4

)
=

(
5

4

)2

·
(

1

4

)
= 0.390625

A6 = f

(
6

4

)
·
(

1

4

)
=

(
6

4

)2

·
(

1

4

)
= 0.5625

A7 = f

(
7

4

)
·
(

1

4

)
=

(
7

4

)2

·
(

1

4

)
= 0.765625

A1 = f

(
8

4

)
·
(

1

4

)
=

(
8

4

)2

·
(

1

4

)
= 1
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R8 = 0.015625 + 0.0625 + 0.140625 + 0.25 + 0.390625 + 0.5625 + 0.765625 + 1 = 3.1875.

One thing to note is
7

4
< 3.1875 <

15

4
. This means we do have a better estimate. We

can keep doing this to get better estimates. Here’s what it would look like by taking more

rectangles.

1. 12 rectangles

Area ≈ 3.0093

2. 20 rectangles
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Area ≈ 2.87

3. 50 rectangles

Area ≈ 2.747
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You can see that we are getting better estimates. However, it appears that I’d have to

take a lot more rectangles to get really close to 2.666. If I used 100 rectangles, the approxi-

mation is 2.7068.

Example 4.2. For the region in the previous problem, take an indefinite number of right-

edge rectangles and find

lim
n→∞

Rn.

Okay, this is harder to draw. We have the same curve, but we are taking basically

infinitely many rectangles to approximate the area. Let’s start with just some number n

rectangles. Since we are chopping the interval [0, 2] into n even pieces, each rectangle will

have the same width. The formula for the width of the rectangles is

∆x =
b− a
n

which in our case is,
2− 0

n
=

2

n

Thus, the right endpoints will be

x1 = a+ 1∆x → 0 + 1 · 2

n
=

2

n

x2 = a+ 2∆x → 0 + 2 · 2

n
=

4

n

x3 = a+ 3∆x → 0 + 3 · 2

n
=

6

n

xi = a+ i∆x → 0 + i · 2

n
=

2i

n

xn = a+ n∆x → 0 + n · 2

n
=

2n

n
= 2
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The area of the rectangles are

1st rectangle:A1 = f(x1) ·∆x

2st rectangle:A2 = f(x2) ·∆x

3st rectangle:A3 = f(x3) ·∆x

and so on...

Area of all the rectangles are

A ≈ f(x1) ·∆x+ f(x2) ·∆x+ f(x3) ·∆x+ ...+ f(xn) ·∆x

So the rectangles are

A1 = f

(
2

n

)
· 2

n
=

(
2

n

)2

· 2

n

A2 = f

(
2

n

)
· 2

n
=

(
4

n

)2

· 2

n

A3 = f

(
6

n

)
· 2

n
=

(
6

n

)2

· 2

n

Ai = f

(
2i

n

)
· 2

n
=

(
2i

n

)2

· 2

n

...

An = f

(
2n

n

)
· 2

n
=

(
2n

n

)2

· 2

n

Let’s write it as one long sum and simplify
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Rn =

(
2

n

)2

· 2

n
+

(
4

n

)2

· 2

n
+

(
6

n

)2

· 2

n
+ . . .+

(
2n

n

)2

· 2

n

=
2

n
· 1

n2

(
22 + 42 + 62 + . . .+ (2n)2

)

factor out 22 = 4 from every term

=
8

n3

(
12 + 22 + 32 + . . .+ n2

)

In order to finish, we need to use a commonly known identity – the sum of the squares

of the first n integers:

12 + 22 + 32 + 42 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
.

Thus, we can substitute this into our equation for Rn and we have

Rn =
8

n3
· n(n+ 1)(n+ 2)

6
=

4n(n+ 1)(2n+ 1)

3n3
.
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Thus, to find the exact value, we need to take a limit as n→∞:

A = lim
n→∞

Rn = lim
n→∞

4n(n+ 1)(2n+ 1)

3n3

=
4

3
lim
n→∞

(n+ 1)(2n+ 1)

n2

=
4

3
lim
n→∞

2n2 + 3n+ 1

n2

=
4

3
lim
n→∞

2 + 3/n+ 1/n2

1

=
8

3

≈ 2.667

Thus, it seems that the exact area under the curve f(x) = x2 over the interval (0, 2) is
8

3
.

This would work for the left endpoint rectangles too, Ln, and this is exactly how we define

the area under a curve:

A = lim
n→∞

Ln = lim
n→∞

Rn.

Example 4.3. Estimate the area under the graph of y =
1

1 + x2
from -2 to 2 using 6

rectangles.

1. Width: ∆ =
b− a
n

=
2− (−2)

6
=

2

3

2. Find x1, x2, x3, x4, x5, x6
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x1 = a+ 1∆x = −2 + 1 · 2

3
= −4

3

x2 = a+ 2∆x = −2 + 2 · 2

3
= −2

3

x3 = a+ 3∆x = −2 + 3 · 2

3
= 0

x4 = a+ 4∆x = −2 + 4 · 2

3
=

2

3

x5 = a+ 5∆x = −2 + 5 · 2

3
=

4

3

x6 = a+ 6∆x = −2 + 6 · 2

3
= 2

3. Now just plug everything in

A = f(x1) ·∆x+ f(x2) ·∆x+ f(x3) ·∆x+ f(x4) ·∆x+ f(x5) ·∆x+ f(x6) ·∆x

=
1

1 + (−4/3)2
· 2

3
+

1

1 + (−2/3)2
· 2

3
+

1

1 + (0)2
· 2

3
+

1

1 + (2/3)2
· 2

3
+

1

1 + (4/3)2
· 2

3

+
1

1 + (2)2
· 2

3

=
2

3
[0.36 + 0.6923 + 1 + 0.69203 + 0.36 + 0.2]

= 2.203

The exact value for the area is approximately 2.2143.
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We now consider a more general problem, so suppose we have the following general

function f(x) over the interval (a, b), and we divide it into n rectangles:

Again, all of these intervals have equal width, and since the width of the entire interval

is b− a, the width of each is

∆x =
b− a
n

.

These n strips divide the interval [a, b] into n subintervals: [x0, x1], [x1, x2] . . . [xn−1, xn].

as per our diagram, we have x0 = a and xn = b. We have the following right endpoints for

these intervals:

x1 = a+ ∆x

x2 = a+ 2∆x

x3 = a+ 3∆x

... =
...

If we wish to consider approximating the ith strip of the area, we know it has width ∆x

and height f(xi), where xi if the value of f at the right endpoint. Then, the area of the ith

rectangle is

Ai = ∆xf(xi),
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and we can get Rn by summing together these rectangles:

Rn = f(x1)∆x+ f(x2)∆x+ . . .+ f(xn)∆x.

The more and more rectangles we take, as we let n→∞, the better the approximation

we will get. And this gives us our definition:

Definition 4.1. The area of the region A that lies underneath the graph of a positive

continuous function f is the limit of the sum of approximating rectangles:

A = lim
n→∞

Rn = lim
n→∞

(f(x1)∆x+ f(x2)∆x+ . . .+ f(xn)∆x) .

Nice, as long as the function f is continuous, the above limit will always exist. Also, we

get out the exact same value if we use the left endpoints instead:

A = lim
n→∞

Ln = lim
n→∞

(xf(x0)∆ + f(x1)∆x+ . . .+ f(xn−1∆x)) .

As a matter of fact, there’s nothing special at all about choosing left or right endpoints,

all that matters is that we choose some points, as long as it is in the correct interval. So if

x∗i is in [xi−1, xi], we’re good. We call the points x∗1, x
∗
2, ..., x

∗
n the sample points, and we get

a very general expression for the area under the curve:

A = lim
n→∞

(xf(x∗1)∆ + f(x∗2)∆x+ . . .+ f(x∗n)∆x) .

In order to write this a little cleaner, we use what is known as sigma notation for a summa-

tion:
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n∑
i=1

f(x∗i )∆x = f(x∗1)∆x+ f(x∗2)∆x+ . . .+ f(x∗n)∆x.

Thus, we can write

A = lim
n→∞

n∑
i=1

f(xi)∆x

A = lim
n→∞

n∑
i=1

f(xi−1∆x)

A = lim
n→∞

n∑
i=1

f(x∗i )∆x

We will also need these later.

n∑
i=1

i =
n(n+ 1)

2
.

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

n∑
i=1

i3 =

[
n(n+ 1)

2

]2
.

Example 4.4. Let A be the area under the curve of f(x) = sin(x) over [0, π]. Find the

expression for A as a limit, without evaluating that limit.

Since a = 0 and b = π, the width of the interval is π. The width of each subinterval is

∆x =
π − 0

n
=
π

n
and xi = a+ i ·∆x

Thus, we have x1 = π/n, x2 = 2π/n, x3 = 3π/n, ..., xi = iπ/n. The sum of the areas of the
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approximating rectangles is

Rn =
n∑

i=1

f(xi)∆x

=∆x ·
n∑

i=1

sin(xi)

=
π

n

(
sin
(π
n

)
+ sin

(
2π

n

)
+ . . .+ sin

(nπ
n

))
By definition, the area under the curve is

A = lim
n→∞

Rn = lim
n→∞

π

n

(
sin
(π
n

)
+ sin

(
2π

n

)
+ . . .+ sin

(nπ
n

))
.

With sigma notation, we have

A = lim
n→∞

π

n

n∑
i=1

sin

(
iπ

n

)
.

This is NOT an easy sum or limit to try to do by hand, so we won’t. Instead, what we

can do is approximate this a little - let us do an approximation with n = 4 rectangles, each

with width π/4. The four intervals are then

[
0,
π

4

]
,
[π

4
,
π

2

]
,

[
π

2
,
3π

4

]
,
[π

4
, π
]
.

We can choose any points we like to try to approximate, but since we only know the

exact values of sin with denominators of 2, 3, 4 or 6, we use a right endpoint approximation:

R4 =
4∑

i=1

f(xi)δx

=
4∑

i=1

sin(xi)
π

4

=
π

4

(
sin
(π

4

)
+ sin

(π
2

)
+ sin

(
3π

4

)
+ sin(π)

)
=
π

4

(√
2

2
+ 1 +

√
2

2
+ 0

)
=
π

4

(√
2 + 1

)
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But, this may not be so good, so let us consider a left endpoint approximation, and we will

average the two:

L4 =
4∑

i=1

f(xi−1)δx

=
3∑

i=0

sin(xi)
π

4

=
π

4

(
sin(0) + sin

(π
4

)
+ sin

(π
2

)
+ sin

(
3π

4

))
=
π

4

(
0 +

√
2

2
+ 1 +

√
2

2

)
=
π

4

(√
2 + 1

)

Oh, that’s weird! They’re the same! This does NOT mean that this is the exact answer.

Much more likely is that the two approximations have the same error.

4.1.1 The Distance Problem

Suppose that we know the velocity of an object at all times, meaning that we know the value

of v(t) for all possible values of t in the domain of the function. If we have constant velocity,

then the distance is very easy to compute, we simply take distance equals velocity times time.

d = vt

But, besides that, it isn’t so simple.

Example 4.5. Suppose the mileage on a car doesn’t work and we want to estimate the

distance we drive over a minute-long time interval. We get readings off the speedometer
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every 10 seconds and record them as:

Time (sec) 0 10 20 30 40 50 60

Velocity (ft/sec) 22 34 46 42 38 28 34

(Note that if the units are not consistent, you must change them so that they are). In

order to find how far we have traveled, we can assume that the velocity does not change over

a 10 second period, and then jumps at the 10 second mark. For example, we can assume

that for the first 10 seconds, we travel at 22 ft/sec. Thus, we travel

10 · 22 = 220

feet in the first 10 seconds. Then, for the next 10 seconds, we assume we travel at a

constant speed of 34 ft/sec, so we have another

10 · 34 = 340

feet in the second 10 seconds. If we add up all the left endpoints (t = 0, 10, 20, 30, 40, 50)

we get

D = 10(22) + 10(34) + 10(46) + 10(42) + 10(38) + 10(28) = 2100.

we could just as well add up all the velocities on the right endpoints, and get an approx-

imation that way:

D = 10(34) + 10(46) + 10(42) + 10(38) + 10(28) + 10(34) = 2220.

This should remind you of the sums we took in the area under the curve example. If we

shorten our intervals, and take readings every 5, 2 or 1 second, we would get a more accurate
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distance. Simply, what we are doing is taking the area underneath the velocity curve with

rectangles equally spaced apart.

1. Using the Left Hand Endpoints

2. Using the Right Hand Endpoints
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In general, suppose that we have an object moving with velocity v = f(t) over the interval

[a, b] and we need to assume, for now, that f(t) ≥ 0 for all t ∈ [a, b]. We take readings for

velocity at times a = t0, t1, t2, ..., tn = b. If we let all of the times be equally spaced, then

the time between any two consecutive readings is

∆t =
b− a
n

.

Since the velocity during the first time interval is approximately f(t0), the distance

traveled is f(t0) ·∆t – this is true for any of the time intervals, and thus, the total distance

traveled is approximately

f(t0) ·∆t+ f(t1) ·∆t+ f(t2) ·∆t+ . . .+ f(tn−1) ·∆t.

Alternately, if we consider right endpoints, then the total distance traveled is

f(t1) ·∆t+ f(t2) ·∆t+ f(t3) ·∆t+ . . .+ f(tn) ·∆t.

And since the more often we measure velocity, the more accurate our distance becomes,

the distance is the limit of the expression above:

d = lim
n→∞

n∑
i=1

f(ti−1)∆t = lim
n→∞

n∑
i=1

f(ti)∆t,

the exact same setup as the area under a curve problem.
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