1.5 Composition of Functions

Definition 1.3 (Composition of Functions). For functions $f(x)$ and $g(x)$, the composite function $f \circ g$ is

$$
f \circ g=f(g(x))
$$

People struggle with composition for many reasons. Let's go through a series of examples that will build up to the definition we just stated for the composition of functions.

Function	Value
$f(x)$	$2 x^{2}-\cos (x)+4 x-3$
$f(2)$	$2(2)^{2}-\cos (2)+4(2)-3$
$f(-6)$	$2(-6)^{2}-\cos (-6)+4(-6)-3$
$f(a)$	$2(a)^{2}-\cos (a)+4(a)-3$
$f(2 x+1)$	$2(2 x+1)^{2}-\cos (2 x+1)+4(2 x+1)-3$
$f(g(x))$	$2(g(x))^{2}-\cos (g(x))+4(g(x))-3$

All of these are composition of functions. The last two are more obvious. A composition of functions is just evaluating a function, like $f(2)$. The difference is now we evaluate a function with another function. So $f(2 x+1)$ is a composition of functions. Remember, all you're doing is plugging one function into another, just like how you would evaluate any function.

Example 1.9.

1. Let $f(x)=3 x^{2}-4 x+1$ and $g(x)=3 x-5$. Find
(a) $f \circ g$:

First, always rewrite $f \circ g$ as $f(g(x))$.

So, $f \circ g=f(g(x))=f(3 x-5)=3(3 x-5)^{2}-4(3 x-5)+1$.
(b) $(f \circ g)(2)$. This notation is really just asking for $f(g(2))$.

$$
f(g(2))=f(1)=3(1)^{2}-4(1)+1=0
$$

2. Let $f(x)=\frac{1}{x}$ and $g(x)=x+1$. Find the domain of
(a) $f \circ g$:

Let's just take a look at what $f(g(x))$ is.

$$
f(g(x))=f(x+1)=\frac{1}{x+1}
$$

There are two ways of doing this. One way is just to find $f \circ g$ (do NOT simplify it) and simply find it's domain. From above you can see $x \neq-1$. Another way is to do it in steps. First, we look at the domain of $g(x)$. Since $g(x)=x+1$, we have no domain issues. Ok, so we can plug anything into $g(x)$, but what about $f(x)$. Notice that we can't plug 0 into $f(x)$. And what do I plug into $g(x)$ that will give me $g(x)=0$?
(b) $g \circ f$:

$$
g(f(x))=g\left(\frac{1}{x}\right)=\frac{1}{x}+1
$$

We can never have a denominator equal 0 , so $x \neq 0$. So the domain is all reals except $x=0$.

