1 Review, Limits, and Continuity

1.1 Functions

Definition 1.1 (Function). - a function is a rule that associates to each x-value one y-value.
Common functions you'll see are

1. $y=\sqrt{x-1}$
2. $y=x^{2}$
3. $y=\frac{1}{x+4}$

Since we're on the topic of functions, here's an example of one that isn't a function.

$$
y^{2}=x
$$

Why?

Remember, every function associates an x-value to ONE y-value. Another way to think about it is

If two different y-values can come from the same x-value, it's not a function.

x	y
4	-2
4	2

See what happened? One x-value, two y-values. That's bad. So this isn't a function. Let's move on!

Domain Issues

Let's stop for a moment and look at the domain. In this course, domain problems don't come up too much. We focus a lot on functions that 'work.' But the first week or so, we'll be looking at piece-wise functions and these functions have domain issues all over the place.

Definition 1.2 (Domain). This is the collection of all legal inputs. If you can plug in a number and get a 'number' out, then you're in the domain.

I always think of the domain as stuff that doesn't break the function.

So what are some common domain issues?

1. Square rooting a negative number: $y=\sqrt{x-1}$

Setting $x-1 \geq 0$ gives us a domain of $x \geq 1$. Plug any number less than 1 and you square root a negative.
2. Dividing by 0

Examples:
(a) $y=\frac{1}{x}$
(b) $y=\frac{x}{x^{2}-1}$
(c) $y=\frac{x}{\sqrt{x-2}-4}$

Of course, dividing by 0 is the worst one. But you'll see that dividing by 0 shows up quite a bit in this course.

Solution to 2c

You got two things to worry about.

1. When does the denominator equal 0
2. When are we square rooting a negative

Ok, let's get started.

1. Set $\sqrt{x-2}-4=0$.

$$
\begin{aligned}
& \sqrt{x-2}-4=0 \\
& \rightarrow \sqrt{x-2}=4 \\
& \rightarrow x-2=16 \\
& \rightarrow x=18
\end{aligned}
$$

2. Set $\sqrt{x-2} \geq 0$

$$
\begin{gathered}
x-2 \geq 0 \\
x \geq 2
\end{gathered}
$$

Easy, right?

So the overall domain would look something like this:

$$
\text { Domain: }[2,18) \cup(18, \infty)
$$

