2.9 Linear Approximations and Differentials

2.9.1 Linear Approximation

Consider the following graph,

Recall that this is the tangent line at $x=a$. We had the following definition,

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

So for x close to a, we have the following

$$
f^{\prime}(a) \approx \frac{f(x)-f(a)}{x-a}
$$

After rearranging the terms, we get an estimate for $f(x)$ when x is near a.

$$
f(x)=f(a)+f^{\prime}(a)(x-a)
$$

This is called the linearization of $f(x)$ near $x=a$ or linear approximation of $f(x)$ near $x=a$. You may not recognize it, but this is the equation of the tangent line at $x=a$. It's just written with different notation.

So how can this be useful? Suppose you wanted to find the value $f(b)$ where b is really close to a. Instead of using the function $f(x)$ to evaluate it, we can just the tangent line. From the graph, you can see that the tangent line and the function $f(x)$ look very similar if you focus only on the area near $x=a$. Here's that graph focused near $x=a$.

You can see the true value of $f(b)$ and the estimate you get from the tangent line are pretty close. Now as you move away from $x=a$, the tangent line and the function deviate quite a bit. So a linear approximation is only useful when evaluating near $x=a$.

Example 2.47. Find the linearization of $f(x)=\sqrt{x+3}$ at $a=1$ and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$.

Recall the linearization of $f(x)$ near $x=a$ is $f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)$. So what do we need?

- a
- $f(a)$
- $f^{\prime}(x)$
- $f^{\prime}(a)$

We know $a=1$, and $f(a)=f(1)=\sqrt{1+3}=2$, and

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x+3}}
$$

so,

$$
f^{\prime}(1)=\frac{1}{2 \sqrt{1+3}}=\frac{1}{4}
$$

Putting all this together, we get

$$
f(x) \approx L(x)=2+\frac{1}{4}(x-1)
$$

So how do we estimate $\sqrt{4.05}$? If you plug in $a=1$, we get $\sqrt{4}$. So what do you have to plug in for x to get $\sqrt{4.05}$? You need to plug in $x=1.05$, right?

$$
\sqrt{4.05}=f(1.05) \approx L(1.05)=2+\frac{1}{4}(1.05-1)
$$

$$
\sqrt{4.05} \approx 2.0125
$$

Now, let's do the same thing and estimate $\sqrt{3.98}$. Again, we need to figure out what is x. What do we need to plug in to $\sqrt{x+3}$ to get $\sqrt{3.98}$? I'm hoping you say $x=0.98$. If you did, that's great.

$$
\sqrt{3.98}=f(3.98) \approx L(3.98)=2+\frac{1}{4}(.98-1)=1.995
$$

So how close are our estimates? Let's find their relative error.

$$
\text { Relative Error: }\left|\frac{\text { TRUE }- \text { APPROX }}{\text { APPROX }}\right|
$$

So for $\sqrt{3.98}$, the relative error is

$$
\mathrm{RE}=\left|\frac{\sqrt{3.98}-1.995}{\sqrt{3.98}}\right|=0.000003141
$$

And for $\sqrt{4.05}$, the relative error is

$$
\mathrm{RE}=\left|\frac{\sqrt{4.05}-2.0125}{\sqrt{4.05}}\right|=0.00001929
$$

These aren't bad estimates. Now what if I try to estimate $\sqrt{10}$ using the current linearization formula?

$$
\sqrt{10}=f(7) \approx L(7)=2+\frac{1}{4}(7-1)=3.5
$$

The relative error is

$$
\mathrm{RE}=\left|\frac{\sqrt{10}-3.5}{\sqrt{10}}\right|=.106797 \text { or } 10.6797 \%
$$

Obviously, this estimate isn't as good as the previous two. However, it's still not bad. If you want to experiment more, try estimating $\sqrt{100}$ or something higher.

Example 2.48. Using linearization, estimate $\sin (\pi / 180)$.

1. First, the whole point of learning about linearization is to estimate something complicated with something easy. In the last example, we used $\sqrt{4}$ to estimate $\sqrt{4.05}$.
2. Let $f(x)=\sin (x)$.
3. We need a value for a. $\pi / 180$ is close to 0 , so let's use $a=0$. As a bonus (more of a requirement really), we know $\sin (0)$.
4. Recall that $L(x)=f(a)+f^{\prime}(a)(x-a)$. We need to find $f^{\prime}(a)$.

$$
f^{\prime}(x)=\cos (x)
$$

so,

$$
f^{\prime}(0)=\cos (0)=1
$$

5. Let's put this all together to find $L(x)$.

$$
\sin (x) \approx L(x)=\sin (0)+\cos (0)(x-0)=x
$$

That's interesting. When x is near 0 , we just showed $\sin (x) \approx x$.

Our objective was to estimate $\sin (\pi / 180)$. Based on what we just saw,

$$
\sin (\pi / 180) \approx \pi / 180
$$

I'd like to verify $\sin (x) \approx x$ by looking at the graph.

The graph on the right is zoomed in near $x=0$ to show you that the function $f(x)=x$ is a good approximation for $f(x)=\sin (x)$.

2.9.2 Differentials

Differentials can be used to do exactly what we just did with linearization. Differentials help us estimate the change in function values. Let's look at some new notation.

- Δx - is the true change in x
- $d x$ - is our independent variable that represents the chagen in x. We let $d x=\delta x$.
- Δy - is the true change in y
- $d y$ - is the estimated change in y

Without looking at the graph yet, does it make sense that the change in y depends on the change in x ? This is why $d x$ is an independent variable and $d y$ is the dependent variable.

Remember that Δy is the true change in y. Based on the graph, we see that $\Delta y=$ $f(x+\Delta x)-f(x)$. This involves us knowing the exact value of $f(x+\Delta x)$. Back in the
linearization part, knowing $f(x+\Delta x)$ is like knowing $\sqrt{4.05}$. Instead I want to estimate Δy with $d y$. Let's start with something we know,

$$
\frac{d y}{d x}=f^{\prime}(x)
$$

This was another way of notating the derivative. Now if we treat $d x$ as an independent variable, we can rearrange this as

$$
d y=f^{\prime}(x) \cdot d x
$$

But this should make sense. $\frac{d y}{d x}$ is the derivative at x. It represents the slope (i.e, the change in y for every unit change in x). Recall that $d x$ is the change in x.

Let's look at a simple example. Suppose I know at $x=1$, the y-value is 5 . How can I use the differential formula to estimate $f(1.7)$?

If the slope is 3 and the change in $x, d x$, is 0.7 , then the change in y from $x=1$ to $x=1.7$ is $3 \cdot 0.7=2.1$.

$$
d y=f^{\prime}(1) \cdot d x=3 \cdot 0.7=2.1
$$

So if you're starting at a y-value of 5 and move up 2.1 units, then the new y-value is 7.1.

Example 2.49. Let's go back to a previous problem and estimate $\sqrt{4.05}$ using the function $f(x)=\sqrt{x+3}$.

1. We need a starting point. We will use $a=1$ since $f(1)=\sqrt{4}$ and that's close to what we want.
2. Next, we need to find $d x$. What do we have to plug into $f(x)$ to get $\sqrt{4.05}$? We need to plug in $x=1.05$. However, $d x$ is just the change in x from your starting point a. So $d x=0.05$.
3. Now we need the slope, $f^{\prime}(1)$, at $x=1$.

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x+3}}
$$

So,

$$
f^{\prime}(1)=\frac{1}{2 \sqrt{1+3}}=\frac{1}{4}
$$

4. So the estimated change in y is

$$
d y=f^{\prime}(1) \cdot(0.05)=\frac{1}{4} \cdot 0.05=.0125
$$

Horray! We have the estimated change in y. But what is this really? dy tells us how much y changes from the original y value. For us, the original y value is $\sqrt{4}=2$. So

$$
\sqrt{4.05} \approx \sqrt{4}+d y=2+0.0125=2.0125
$$

Guess what? That's exactly what we got using linearization!

