1.3 Piecewise Functions

Ok, let's just take a look at a piece-wise graph.

Graph 1.1

Now a piece-wise function is just one large function $f(x)$ made up of smaller functions on different parts of the domain.

Example 1.3.

$$
f(x)= \begin{cases}\frac{1}{x^{2}}, & x<0 \\ \frac{1}{x}, & 0<x<1 \\ 2 x-4, & {[1,3) \cup(3, \infty)}\end{cases}
$$

There are a couple of ways of graphing a piece-wise function. If it's your first time or you haven't done it in a while, just graph all the functions and then erase the part that doesn't count (i.e. when it's not in its part of the domain).

Example 1.4. Graph $f(x)= \begin{cases}(x+2)^{2}-1, & x<-1 \\ 2, & x=-1 \\ -2 x+3, & -1<x<1 \\ \sqrt{x}, & x \geq 1\end{cases}$

We need to take this one piece at a time. Get it... one 'piece.' You know... because it's a piece-wise function. Ok moving on!

1. Let's start with $(x+2)^{2}-1$. We haven't covered transformations yet, but you probably remember a little bit about transforming $f(x)=x^{2}$. Let's start with graphing the whole thing.

Now erase what we don't need.

It's now restricted to $x<-1$.

Note the open dot at $(-1,0)$. It's open because the interval does not include $x=-1$.
2. Next up...2?. What this really means is when $x=-1$, the y-value is 2 . It's just a closed point on the graph.

All we did here is add the point $(-1,2)$.
3. On to $-2 x+3$. Let's add that to the graph.

The graph only shows $-2 x+3$ when $-1<x<-1$.
4. Finally we add \sqrt{x}.

Now erase what we don't need.

We are finally done. Notice how that open dot at $(1,1)$ is now a closed dot.

