3.5 Summary of Curve Sketching

Follow these steps to sketch the curve.

1. Domain of $f(x)$
2. x and y intercepts
(a) x-intercepts occur when $f(x)=0$
(b) y-intercept occurs when $x=0$
3. Symmetry: Is it even or odd or neither. This usually isn't of help.

If $f(-x)=-f(x)$, then $f(x)$ is symmetric about the origin.
If $f(-x)=f(x)$, then $f(x)$ is symmetric about the y-axis.
4. Find any vertical or horizontal asymptotes.
(a) Vertical Asymptote: Find all x-values where $\lim _{x \rightarrow a} f(x)= \pm \infty$. Usually when the denominator is 0 and the numerator is not 0
(b) Horizontal Aymptotes: Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
5. Find $f^{\prime}(x)$
(a) Find the critical values, all x-values where $f^{\prime}(x)=0$ or when $f^{\prime}(x)$ does not exist.
(b) Find increasing / decreasing intervals using numberline
(c) Find local maximums / minimums (if any exist). Remember to write them as points.
i. Local Max at $x=c: f^{\prime}(x)$ changes from $(+)$ to $(-)$ at $x=c$.
ii. Local Min at $x=c: f^{\prime}(x)$ changes from $(-)$ to $(+)$ at $x=c$.
(d) Plot them
6. Find $f^{\prime \prime}(x)$
(a) Find all x-values where $f^{\prime \prime}(x)=0$ or when $f^{\prime \prime}(x)$ does not exist.
(b) Find intervals of concavity using the number line
(c) Find points of inflection
i. Must be a place where concavity changes
ii. The point must exist (i.e, can't be an asymptote, discontinuity)
(d) Plot them
7. Sketch

Example 3.17. Sketch $y=\frac{x}{\sqrt{x^{2}+1}}$
It's probably best to rewrite $f(x)$ as $f(x)=\frac{x}{\left(x^{2}+1\right)^{1 / 2}}$

1. Domain: There are no domain issues.
2. Intercepts:

$$
\begin{aligned}
& y \text { - intercept: }(0,0) \\
& x \text {-intercept: }(0,0)
\end{aligned}
$$

3. Symmetry:

$$
f(-x)=\frac{(-x)}{\sqrt{(-x)^{2}+1}}=\frac{-x}{\sqrt{x^{2}+1}}=-f(x)
$$

This is an odd function. This means once we finish sketching, if the graph is not symmetric about the origin we did something wrong.
4. Asymptotes:
(a) Horizontal Asymptote:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}} & =\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{x}{x} \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+1}} & =\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{x}{-x} \\
& =-1
\end{aligned}
$$

Recall: $\sqrt{x^{2}}= \begin{cases}x, & x>0 \\ -x, & x<0\end{cases}$
(b) Vertical Asymptote:

There are none. Nothing makes $\sqrt{x^{2}+1}=0$.
5. Find y^{\prime}. Let's use the Quotient Rule.

$$
\begin{aligned}
y^{\prime} & =\frac{\left(x^{2}+1\right)^{1 / 2} \cdot(1)-x \cdot \frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot 2 x}{\left[\left(x^{2}+1\right)^{1 / 2}\right]^{2}} \\
& =\frac{\left(x^{2}+1\right)^{1 / 2}-x^{2}\left(x^{2}+1\right)^{-1 / 2}}{x^{2}+1} \\
& =\frac{\left(x^{2}+1\right)^{-1 / 2}\left[\left(x^{2}+1\right)-x^{2}\right]}{x^{2}+1} \\
& =\frac{\left(x^{2}+1\right)^{-1 / 2}}{x^{2}+1} \\
& =\frac{1}{\left(x^{2}+1\right)^{3 / 2}}
\end{aligned}
$$

Critical Values: There are no critical values.

$$
++++++++++++++
$$

Since there are no critical values. Check any point in the domain, the graph is increasing the entire time.

Increasing: $(-\infty, \infty)$
6. Find $y^{\prime \prime}$: Rewrite $y^{\prime}=\left(x^{2}+1\right)^{-3 / 2}$

$$
\begin{aligned}
y^{\prime \prime} & =-\frac{3}{2}\left(x^{2}+1\right)^{-5 / 2} \cdot(2 x) \\
& =\frac{-3 x}{\left(x^{2}+1\right)^{5 / 2}}
\end{aligned}
$$

Critical Values: $x=0$

Concave Up: $(-\infty, 0)$
Concave Down: $(0, \infty)$
Point of Inflection: $(0,0)$
7. Sketch the graph

Example 3.18. Sketch $y=2 \sqrt{x}-x$

1. Domain: $x \geq 0$
2. Intercepts:
(a) y-intercept: $(0,0)$
(b) x-intercepts: Set $2 \sqrt{x}-x=0$

$$
\begin{aligned}
2 \sqrt{x}-x & =0 \\
2 \sqrt{x} & =x \\
(2 \sqrt{x})^{2} & =(x)^{2} \\
4 x & =x^{2} \\
0 & =x^{2}-4 x \\
0 & =x(x-4)
\end{aligned}
$$

which gives us x-intercepts $(0,0)$ and $(4,0)$.
3. There is no symmetry.
4. Asymptotes:
(a) There are no vertical asymptotes.
(b) There are no horizontal asymptotes.

$$
\lim _{x \rightarrow \infty} 2 \sqrt{x}-x=-\infty
$$

We already did an example of this type of limit. Use that technique to show it's $-\infty$.
5. Find y^{\prime}

$$
\begin{aligned}
y^{\prime} & =2 \cdot \frac{1}{2} x^{-1 / 2}-1 \\
& =x^{-1 / 2}-1 \\
& =\frac{1}{\sqrt{x}}-1
\end{aligned}
$$

We have a critical value at $x=0$ because y^{\prime} does not exist when $x=0$. Now we need to solve $y^{\prime}=0$

$$
\begin{aligned}
\frac{1}{\sqrt{x}}-1 & =0 \\
\frac{1}{\sqrt{x}} & =1 \\
1 & =\sqrt{x} \\
1 & =x
\end{aligned}
$$

The other critical value is at $x=1$.
6. Use the number line to determine where y is increasing or decreasing.

Note, we did not have to pick a number in the region less than 0 since that region is not in the domain.

Increasing: $(0,1)$
Decreasing: $(1, \infty)$
Local Maximum: $(1,1)$
Local Minimum: None
7. Find $y^{\prime \prime}$. First, rewrite y^{\prime} as $y^{\prime}=x^{-1 / 2}-1$.

$$
\begin{aligned}
y^{\prime \prime} & =-\frac{1}{2} x^{-3 / 2} \\
y^{\prime \prime} & =-\frac{1}{2 x^{3 / 2}}
\end{aligned}
$$

There is a critical value at $x=0$.
8. Use the number line to determine concavity.

Concave Down: $(0, \infty)$
Concave Up: Never
No points of inflection
9. Sketch the graph

Example 3.19. Sketch $y=1+\frac{1}{x}+\frac{1}{x^{2}}$

1. Domain: $x \neq 0$
2. Intercepts:
(a) y-intercept: None, because $x \neq 0$
(b) x-intercept(s): Let's set $y=0$

$$
1+\frac{1}{x}+\frac{1}{x^{2}}=0
$$

Multiply through by x^{2}

$$
x^{2}+x+1=0
$$

There are no solutions to this equation. This means y does not have any x intercepts.
3. There is no symmetry.
4. Asymptotes:
(a) Vertical Asymptote: $x=0$
(b) Horizontal Asymptote:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} 1+\frac{1}{x}+\frac{1}{x^{2}}=1 \\
& \lim _{x \rightarrow-\infty} 1+\frac{1}{x}+\frac{1}{x^{2}}=1
\end{aligned}
$$

So there is one horizontal asymptote at $y=1$.
5. Find y^{\prime}. Rewrite y as $y=1+x^{-1}+x^{-2}$.

$$
y^{\prime}=-x^{-2}-2 x^{-3}
$$

To find critical values, we need to find out when $y^{\prime}=0$ or y^{\prime} does not exist.

We see y^{\prime} does not exist when $x=0$. Next, let's set $y^{\prime}=0$

$$
\begin{aligned}
& -x^{-2}-2 x^{-3}=0 \\
& -x^{-3}(x+2)=0
\end{aligned}
$$

So we have critical values at $x=0$ and $x=-2$.
6. Use the number line to determine when y is increasing / decreasing.

Increasing: $(-2,0)$
Decreasing: $(-\infty,-2)$ and $(0, \infty)$
Local Minimum: $\left(-2, \frac{3}{4}\right)$
There is no local maximum. The number line indicates there would be one at $x=0$.
But recall that $x=0$ is not in the domain.
7. Find $y^{\prime \prime}$

$$
y^{\prime \prime}=2 x^{-3}+6 x^{-4}
$$

Critical values occur when $y^{\prime \prime}=0$ and $y^{\prime \prime}$ does not exist. You can see $y^{\prime \prime}$ does not exist when $x=0$.

$$
\begin{aligned}
& 2 x^{-3}+6 x^{-4}=0 \\
& 2 x^{-4}(x+3)=0
\end{aligned}
$$

So we have critical values at $x=0$ and $x=-3$
8. Use the number line to determine concavity.

Concave Down: $(-\infty,-3)$
Concave Up: $(-3,0)$ and $(0, \infty)$. You cannot write $(-3, \infty)$ because $x \neq 0$.
We have one point of inflection at $\left(-3, \frac{7}{9}\right)$.
9. Time to sketch!

