
3.5 Summary of Curve Sketching Brian E. Veitch

3.5 Summary of Curve Sketching

Follow these steps to sketch the curve.

1. Domain of f(x)

2. x and y intercepts

(a) x-intercepts occur when f(x) = 0

(b) y-intercept occurs when x = 0

3. Symmetry: Is it even or odd or neither. This usually isn’t of help.

If f(−x) = −f(x), then f(x) is symmetric about the origin.

If f(−x) = f(x), then f(x) is symmetric about the y-axis.

4. Find any vertical or horizontal asymptotes.

(a) Vertical Asymptote: Find all x-values where lim
x→a

f(x) = ±∞. Usually when the

denominator is 0 and the numerator is not 0

(b) Horizontal Aymptotes: Find lim
x→∞

f(x) and lim
x→−∞

f(x).

5. Find f ′(x)

(a) Find the critical values, all x-values where f ′(x) = 0 or when f ′(x) does not exist.

(b) Find increasing / decreasing intervals using numberline

(c) Find local maximums / minimums (if any exist). Remember to write them as

points.

i. Local Max at x = c: f ′(x) changes from (+) to (-) at x = c.

ii. Local Min at x = c: f ′(x) changes from (-) to (+) at x = c.

(d) Plot them

6. Find f ′′(x)

(a) Find all x-values where f ′′(x) = 0 or when f ′′(x) does not exist.
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3.5 Summary of Curve Sketching Brian E. Veitch

(b) Find intervals of concavity using the number line

(c) Find points of inflection

i. Must be a place where concavity changes

ii. The point must exist (i.e, can’t be an asymptote, discontinuity)

(d) Plot them

7. Sketch
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3.5 Summary of Curve Sketching Brian E. Veitch

Example 3.17. Sketch y =
x√

x2 + 1

It’s probably best to rewrite f(x) as f(x) =
x

(x2 + 1)1/2

1. Domain: There are no domain issues.

2. Intercepts:

y − intercept: (0, 0)

x− intercept: (0, 0)

3. Symmetry:

f(−x) =
(−x)√

(−x)2 + 1
=

−x√
x2 + 1

= −f(x)

This is an odd function. This means once we finish sketching, if the graph is not

symmetric about the origin we did something wrong.

4. Asymptotes:

(a) Horizontal Asymptote:

lim
x→∞

x√
x2 + 1

= lim
x→∞

x√
x2

= lim
x→∞

x

x

= 1

lim
x→−∞

x√
x2 + 1

= lim
x→−∞

x√
x2

= lim
x→∞

x

−x
= −1

Recall:
√
x2 =

x, x > 0

−x, x < 0
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(b) Vertical Asymptote:

There are none. Nothing makes
√
x2 + 1 = 0.

5. Find y′. Let’s use the Quotient Rule.

y′ =
(x2 + 1)1/2 · (1)− x · 1

2
(x2 + 1)−1/2 · 2x

[(x2 + 1)1/2]
2

=
(x2 + 1)1/2 − x2(x2 + 1)−1/2

x2 + 1

=
(x2 + 1)−1/2 [(x2 + 1)− x2]

x2 + 1

=
(x2 + 1)−1/2

x2 + 1

=
1

(x2 + 1)3/2

Critical Values: There are no critical values.

Since there are no critical values. Check any point in the domain, the graph is increasing

the entire time.

Increasing: (−∞,∞)

6. Find y′′: Rewrite y′ = (x2 + 1)−3/2

y′′ = −3

2
(x2 + 1)−5/2 · (2x)

=
−3x

(x2 + 1)5/2

Critical Values: x = 0
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Concave Up: (−∞, 0)

Concave Down: (0,∞)

Point of Inflection: (0, 0)

7. Sketch the graph

Example 3.18. Sketch y = 2
√
x− x

1. Domain: x ≥ 0

2. Intercepts:

(a) y-intercept: (0, 0)

(b) x-intercepts: Set 2
√
x− x = 0
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2
√
x− x = 0

2
√
x = x

(2
√
x)2 = (x)2

4x = x2

0 = x2 − 4x

0 = x(x− 4)

which gives us x-intercepts (0, 0) and (4, 0).

3. There is no symmetry.

4. Asymptotes:

(a) There are no vertical asymptotes.

(b) There are no horizontal asymptotes.

lim
x→∞

2
√
x− x = −∞

We already did an example of this type of limit. Use that technique to show it’s

−∞.

5. Find y′

y′ = 2 · 1

2
x−1/2 − 1

= x−1/2 − 1

=
1√
x
− 1

We have a critical value at x = 0 because y′ does not exist when x = 0. Now we need

to solve y′ = 0
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1√
x
− 1 = 0

1√
x

= 1

1 =
√
x

1 = x

The other critical value is at x = 1.

6. Use the number line to determine where y is increasing or decreasing.

Note, we did not have to pick a number in the region less than 0 since that region is

not in the domain.

Increasing: (0, 1)

Decreasing: (1,∞)

Local Maximum: (1, 1)

Local Minimum: None

7. Find y′′. First, rewrite y′ as y′ = x−1/2 − 1.

y′′ = −1

2
x−3/2

y′′ = − 1

2x3/2

There is a critical value at x = 0.

8. Use the number line to determine concavity.
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Concave Down: (0,∞)

Concave Up: Never

No points of inflection

9. Sketch the graph

Example 3.19. Sketch y = 1 +
1

x
+

1

x2

1. Domain: x 6= 0

2. Intercepts:

(a) y-intercept: None, because x 6= 0

(b) x-intercept(s): Let’s set y = 0

1 +
1

x
+

1

x2
= 0

Multiply through by x2

x2 + x + 1 = 0

There are no solutions to this equation. This means y does not have any x-

intercepts.
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3. There is no symmetry.

4. Asymptotes:

(a) Vertical Asymptote: x = 0

(b) Horizontal Asymptote:

lim
x→∞

1 +
1

x
+

1

x2
= 1

lim
x→−∞

1 +
1

x
+

1

x2
= 1

So there is one horizontal asymptote at y = 1.

5. Find y′. Rewrite y as y = 1 + x−1 + x−2.

y′ = −x−2 − 2x−3

To find critical values, we need to find out when y′ = 0 or y′ does not exist.

We see y′ does not exist when x = 0. Next, let’s set y′ = 0

−x−2 − 2x−3 = 0

−x−3 (x + 2) = 0

So we have critical values at x = 0 and x = −2.

6. Use the number line to determine when y is increasing / decreasing.
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Increasing: (−2, 0)

Decreasing: (−∞,−2) and (0,∞)

Local Minimum: (−2, 3
4
)

There is no local maximum. The number line indicates there would be one at x = 0.

But recall that x = 0 is not in the domain.

7. Find y′′

y′′ = 2x−3 + 6x−4

Critical values occur when y′′ = 0 and y′′ does not exist. You can see y′′ does not exist

when x = 0.

2x−3 + 6x−4 = 0

2x−4 (x + 3) = 0

So we have critical values at x = 0 and x = −3

8. Use the number line to determine concavity.

Concave Down: (−∞,−3)

Concave Up: (−3, 0) and (0,∞). You cannot write (−3,∞) because x 6= 0.

We have one point of inflection at (−3, 7
9
).

9. Time to sketch!
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