### 1.4 Transformations

When we talk about transformations in this class we are referring to shifting, stretching, compressing, and rotating basic functions. What is a basic function? Here's a list.

1. $y=x^{2}$ or $y=x^{3}$
2. $y=\sqrt{x}$ or $y=\sqrt[3]{x}$
3. $y=\frac{1}{x}$
4. $y=|x|$
5. $y=\cos (x)$ or $y=\sin (x)$

Let's go through the list of our transformations.

For $c>0$. Let $f(x)$ be a basic function.

| Function | Effect | Example |
| :---: | :---: | :---: |
| $y=f(x)+c$ | Vertical Shift up $c$ units | $y=x^{2}+1$ |
| $y=f(x)-c$ | Vertical Shift down $c$ units | $y=\sqrt{x}-4$ |
| $y=f(x-c)$ | Horizontal Shift right $c$ units | $y=\|x-4\|$ |
| $y=f(x+c)$ | Horizontal Shift left $c$ units | $y=\frac{1}{x+3}$ |

Now...on to some examples

## Example 1.5.

1. Sketch $y=(x+2)^{2}$

This is a horizontal shift left 2 units.

2. Sketch $y=\sqrt{x-1}+2$

This has two transformations. Start with the one closest to the $x$. So it goes...
(a) Shift right 1 unit
(b) Shift up 2 units


So those were the shifts. Let's move on to the stretches and compressions

For $c>1$. Let $f(x)$ be a basic function.

| Function | Effect | Example |
| :---: | :---: | :---: |
| $y=c f(x)$ | Stretch vertically by a factor of $c$ | $y=3\|x\|$ |
| $y=\frac{1}{c} f(x)$ | Compress vertically by a factor of $c$ | $y=\frac{1}{4} x^{2}$ |
| $y=f(c x)$ | Compress Horizontally | $y=\cos (4 x)$ |
| $y=f\left(\frac{1}{c} x\right)$ | Stretch horizontally | $y=\sin \left(\frac{x}{2}\right)$ |

## Example 1.6.

1. Sketch $y=3|x|$

This is a vertical stretch by a factor of 3 .


The way this works is take any point on the graph and multiply the $y$-value by a factor of 3 . Note how the point $(1,1)$ is now at $(1,3)$.
2. Sketch $y=\sin \left(\frac{x}{2}\right)$

I think it's easiest to see why this is a horizontal stretch when you use $\sin (\mathrm{x})$. Recall that $\sin (\mathrm{x})$ has a period of $2 \pi$. It means it will complete a full period between 0 to $2 \pi$. The left graph shows 2 full periods. When you multiple the 'inside' by $1 / 2$, it means you'll complete $1 / 2$ as many periods, i.e., the period length should be "larger" or "stretched." So in this case, the new graph should have only 1 period (half as many as the first graph). Let's take a look.


$$
y=\sin (x)
$$


$y=\sin \left(\frac{x}{2}\right)$

Try to sketch:

1. $y=\frac{1}{3} \sqrt{x}$
2. $y=(2 x)^{2}$

Our last transformations are reflections.

| Function | Effect | Example |
| :---: | :---: | :---: |
| $y=-f(x)$ | Flip over $y$-axis | $y=-x^{2}$ |
| $y=f(-x)$ | Flip over $x$-axis | $y=\sqrt{-x}$ |

## Example 1.7.

1. Sketch $y=\sqrt{-x}$

The basic function here is $y=\sqrt{x}$. The ( - ) sign inside of the basic function, so it's a reflection over the $x$-axis. Another way to look at it is follow some points on the original function and the transformed function.

$y=\sqrt{x}$

$y=\sqrt{-x}$

Example 1.8. For the final sketch, let's add a bunch of transformations together. Sketch

$$
y=-2|x-1|+3
$$

To complete this graph, let's map out the steps. Always start with the transformations closest to $x$.

1. Shift 1 unit to the right
2. Vertical Stretch by a factor of 2
3. Reflect over $y$-axis
4. Shift up 3 units

Let's get started. I will plot the point $(1,1)$. We will follow the point as it gets transformed.


1. Shift 1 unit to the right.

2. Vertical Stretch by a factor of 2 .

3. Reflect over the $y$-axis.

4. Shift up 3 units


Alright! We are now done with transformations.

