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4.2 Definite Integral

When we compute the area under a curve, we obtained a limit of the form

lim
n→∞

n∑
x=1

f(x∗i )∆x.

This same limit shows up when we consider finding the distance given the velocity, and

it turns our that this limit shows up in plenty of other situations. As it will appear for the

next, ohhh, forever, we give it a special definition:

Definition 4.2. If f is a function defined over the interval [a, b], we divide [a, b] into n subin-

tervals of equal width ∆x = b−a
n

. We let x0 = a, xa, x2, ..., xn−1, xn = b be the endpoints

of these subintervals and we let x∗1, x
∗
2, ..., x

∗
n be any sample points in the subintervals, so

x∗i ∈ [xi−1, xi].

Then, the definite integral of f from a to b is

∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x∗i )∆x,

∆x =
b− a
n

xi = a+ i∆x for right-hand endpoints

provided that this limit exists and gives the same value for all possible choices of sample

points. If this limit does exist, we say that f is integrable over [a, b].

For notation,

∫ b

a

f(x)dx,
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4.2 Definite Integral Brian E. Veitch

we say that
∫

is the integral sign, a is the lower limit and b is the upper limit of integration.

The dx indicates that the independent variable is x – all other variables may be treated as

constants. Also, the integral
∫ b

a
f(x)dx is a number – it doesn not depend on x, and there is

nothing special about x.

For the function f , we have

∫ b

a

f(x)dx =

∫ b

a

f(t)dt =

∫ b

a

f(y)dy,

for any variable as a placeholder. Lastly, we say that the sum

n∑
i=1

f(x∗i )∆x

is called a Riemann sum. If our function of interest, f(x), is always non-negative, then

we can treat the Riemann sum as a sum of areas of rectangles. Since the definite integral is

the limit of a Riemann sum, a definite integral is the limit of the sum of area of rectangles,

and thus the area under the curve f(x) from x = a to x = b.

If we consider a function f that does take on negative values, such as a function like the

one below,
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4.2 Definite Integral Brian E. Veitch

we cannot just take the heights of all the approximating rectangles – some of these heights

would be negative, and that wouldn’t make a whole lot of sense to have negative area. The

way we can get around this is to consider the net area – we find the area of the curve above

the x-axis. Then, separately, find the area of the curve under the x-axis. We then add these

two areas together. So if A1 is the area above the x-axis but under f(x) computed by base

times height, ∆x · f(x∗i ) and A2 is the area under the x-axis but above f(x), also computed

by base times height, ∆x · f(x∗i ), we have

Area of shaded region = A1 − A2,

since A2 is negative.

Example 4.6. Evaluate

∫ 5

0

(3− x) dx and the area of the shaded region.

1. Let’s take a look at the graph
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4.2 Definite Integral Brian E. Veitch

Do you see how some of the shaded region is above the x-axis and some of it is below.

When we evaluate

∫ 5

0

(3− x) dx, it would consider the area below negative. We can

do it two different ways at this point. Let’s do it without calculus.

2. Do you see how the two shaded regions are triangles? Guess what? We know the

formula for the area of a triangle, A =
1

2
bh.

Area of top triangle: A =
1

2
(3)(3) =

9

2

Area of bottom triangle: A =
1

2
(2)(2) = 2

So our integral is

∫ 5

0

(3− x) dx =
9

2
− 2 =

5

2
= 2.5

3. Now if you want area of the shaded region (pretending like the area below the x-axis

is also positive), then what we really want to evaluate is

∫ 5

0

|3− x| dx
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So the area of the shaded region is

∫ 5

0

|3− x| dx =
9

2
+ 2 =

13

2
= 6.5

Theorem 4.1. If f is continuous on [a, b], or if f has only a finite number of jump discon-

tinuities, then f is integrable on [a, b] – meaning that the definite integral
∫ b

a
f(x)dx exists.

This theorem is NOT easy to prove, by any stretch of the word easy. We do not do it

here, but it does tell us something. It says that there are functions which are not integrable.

In order to simplify the calculations, we can choose specific sample points, and the right

most endpoints are as good as any other. So, we have a half definition, half theorem:

Defi-thereom: If f is integrable on [a, b], then∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(xi)∆x

where

∆x =
b− a
n
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and xi = a+ i∆x.

In order to evaluate these integrals, we have to be able to work with some very commonly

seen sums – the following three equations will be insanely valuable in doing this:

n∑
i=1

1 =n

n∑
i=1

i =
n(n = 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =

(
n(n+ 1)

2

)2

The remaining rules that will help evaluate sums are very similar to rules that let us evaluate

limits:

n∑
i=1

c =nc

n∑
i=1

cai =c
n∑

i=1

ai

n∑
i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi

n∑
i=1

(ai − bi) =
n∑

i=1

ai −
n∑

i=1

bi

Example 4.7. Let’s find the Riemann sum for f(x) = 3−x by taking right-hand endpoints

over the interval [0,5]. By the way, we know the answer should be
5

2
. I’ll take you through

the procedure. Do this whenever you’re asked to find evaluate the Riemann Sum.

1. Find ∆x:

∆x =
b− a
n

=
5− 0

n
=

5

n
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2. Find xi:

xi = a+ i∆x = 0 + i · 5

n
=

5i

n

3. Find f(xi):

f(xi) = 3− xi

= 3−
(

5i

n

)

4. Find Ai:

Ai = f(xi) ·∆x

=

(
3− 5i

n

)
· 5

n

=
15

n
− 25i

n2

5. Find
∑n

i=1Ai:

n∑
i=1

Ai =
n∑

i=1

15

n
− 25i

n2

=
15

n

n∑
i=1

1− 25

n2

n∑
i=1

i

=
15

n
· n− 25

n2
·
(
n(n+ 1)

2

)
= 15− 25n(n+ 1)

2n2

6. Our final step is take the limit as n→∞.

True Area = lim
n→∞

15− 25n(n+ 1)

2n2
= 15− 25

2
= 2.5

which is exactly what we got from the before.
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Example 4.8. Find the Riemann sum for f(x) = 2x3 − 4x by taking sample points to be

right endpoints, where a = 0, b = 2 and n = 4.

With n = 4, the interval width is

2− 0

4
=

1

2
,

and the right endpoints are x1 = .5, x2 = 1, x3 = 1.5 and x4 = 2. The Riemann sum is

R4 =
4∑

i=1

f(xi)∆x

=∆x (f(0.5) + f(1) + f(1.5) + f(2))

=
1

2

((
1

4
− 2

)
+ (2− 4) +

(
27

4
− 6

)
+ (16− 8)

)
=

5

2

Note that since this function does dip negative, this value is NOT the approximation for

the area under the curve. However, it does represent the difference in positive and negative

areas of the approximating rectangles of the curve. But, this is just an approximation. Now,

let’s evaluate ∫ 2

0

2x3 − 4xdx.

With n subintervals, we have

∆x =
b− a
n

=
2

n
.

and we have x0 = 0, x1 = 2/n, x2 = 4/n, and in general, xi = 2i/n. We use right endpoints
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and our theorem to let us evaluate∫ 2

0

2x3 − 4xdx = lim
n→∞

n∑
i=1

f(xi)∆x

= lim
n→∞

n∑
i=1

f

(
2i

n

)
· 2

n

= lim
n→∞

2

n
·

n∑
i=1

(
2

(
2i

n

)3

− 4

(
2i

n

))

= lim
n→∞

2

n
·

n∑
i=1

(
16i3

n3
− 8i

n

)

= lim
n→∞

2

n
·

(
16

n3

n∑
i=1

i3 − 8

n

n∑
i=1

i

)

= lim
n→∞

2

n
·

(
16

n3
·
(
n(n+ 1)

2

)2

− 8

n
·
(
n(n+ 1)

2

))

= lim
n→∞

2

n
·
(

4(n+ 1)2

n
− 4(n+ 1)

)
=8 lim

n→∞

(n+ 1)2

n2
− n+ 1

n

=8 · lim
n→∞

1− 2/n− 1/n2

1
− 1 + 1/n

1

=8 · (1− 1)

=0

Clearly, this integral cannot be interpreted as the area under a curve, since this curve clearly

does not have 0 area. However, it can be interpreted as a difference between the positive

and negative area. If we graph the function, we should see that the positive and negative

areas are identical:
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This is NOT how we will be computing these soon. But just like as with derivatives, we

have to go through it the long way first before we get to the shortcuts.

Example 4.9. Set up an expression for

∫ 7

3

x7 dx as a limit of sums. Do not evaluate.

We let f(x) = x7, a = 3 and b = 7. Thus,

∆x =
7− 3

n
=

4

n
.

We have x1 = 3 + 1 · 4

n
, x2 = 3 + 2 · 4

n
, ..., and we have a generic term

xi = 3 +
4i

n
.

By our theorem, we have ∫ 7

3

x7dx = lim
n→∞

n∑
i=1

f(xi)∆x

= lim
n→∞

n∑
i=1

f

(
3 +

4i

n

)
· 4

n

= lim
n→∞

4

n

n∑
i=1

(
3 +

4i

n

)7

This is not very easy. Soon enough we’ll get to the shortcuts that allow us to evaluate

this quickly. By the way,

∫ 7

3

x7 dx = 719780
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Example 4.10. Evaluate

∫ 2

0

√
4− x2dx

by interpreting the integral as an area.

Since f(x) =
√

4− x2 ≥ 0 for x in [0, 2], we can interpret the integral as the area under

y =
√

4− x2 from 0 to 2. We can rewrite this as y2 = 4−x2, which gives x2 + y2 = 4, which

shows that the graph of f is part of a circle with radius
√

4 = 2. Since our part of the circle

is stuck in Quadrant I, we have a quarter circle. Thus, we take a quarter of the area:

A =
1

4

(
π · r2

)
=

1

4

(
π · 22

)
= π.

Example 4.11. Evaluate ∫ 3

0

3x− 5 dx.
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We are benefited by graphing this first:

In order to find the integral, note that we get positive values for the triangle above the

x-axis and negative values from the triangle below the x-axis. We find the areas of these two

triangles, and subtract. First, find the x-intercept of 3x − 5 = 0, which gives x = 5
3
. The

upper triangle then has base equal to 3− 5
3

= 4
3
, with a height of f(3) = 3(3)− 5 = 4. Thus,

the upper triangle has area

AT =
1

2
· 4

3
· 4 =

8

3
.

Similarly, the lower triangle, which has base 5
3

and height f(0) = −5 has area

AB =
1

2
· 5

3
· | − 5| = 25

6
.

Thus, the integral is
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∫ 3

0

3x− 5dx = AT − AB =
8

3
− 25

6
=
−9

6
=
−3

2
.

4.2.1 Midpoint Rule

These are all good integrals, but for some we still need to approximate, anything with a

curved side, as a matter of fact, which is not part of a circle. We so far have chosen just left

and right endpoints, and we saw in Section 4.1 how those gave us rather bad approximations.

Better, perhaps, to use the midpoint of the intervals!

Definition 4.3 (The Midpoint Rule:).∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x̄i)∆x = ∆x (f(x̄1) + f(x̄2) + . . .+ f(x̄n)) ,

where

∆x =
b− a
n

and

x̄i =
1

2
(xi−1 + xi),

which is the midpoint of the interval [xi−1, xi].

Example 4.12. Use the midpoint rule with n = 4 to approximate∫ 1

0

1

2x
dx.

We start with ∆x = 1−0
4

= 1
4
. The righthand endpoints of the 4 intervals are x1 =

1/4, x2 = 1/2, x3 = 3/4, x4 = 1. To find the midpoints, add consecutive pairs and divide by

2:
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x̄1 =
0 + 1/4

2
=

1

8

x̄2 =
1/4 + 1/2

2
=

3

8

x̄3 =
1/2 + 3/4

2
=

5

8

x̄4 =
3/4 + 1

2
=

7

8

Thus, the midpoint rule gives

∫ 1

0

1

2x
dx =∆x (f(1/8) + f(3/8) + f(5/8) + f(7/8))

=
1

4

(
1

2 · 1/8
+

1

2 · 3/8
+

1

2 · 5/8
+

1

2 · 7/8

)
=

1

4

(
1

1/4
+

1

3/4
+

1

5/4
+

1

7/4

)
=

1

4

(
4 +

4

3
+

4

5
+

4

7

)
=

176

105

≈1.68

Now, since the function is always positive, we can think of this as the area under the

curve. However, we still have no idea how good of an approximation this is. In this case,

it’s horrible since the area is ∞.

Example 4.13. Let’s evaluate

∫ 2

0

x2 dx using the midpoint and 6 rectangles.

Recall we did this example using left and right hand endpoints. It took us 100 rectangles

to get an estimate of 2.747. We proved the exact area is
8

3
≈ 2.67.
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1. ∆x =
2− 0

6
=

1

3

2. Find xi

x1 = 0 + 1 · 1

3
=

1

3

x2 = 0 + 2 · 1

3
=

2

3

x3 = 0 + 3 · 1

3
=

3

3

x4 = 0 + 4 · 1

3
=

4

3

x5 = 0 + 5 · 1

3
=

5

3

x6 = 0 + 6 · 1

3
=

6

3

so the midpoints are

x̄1 =
1

6

x̄2 =
3

6

x̄3 =
5

6

x̄4 =
7

6

x̄5 =
9

6

x̄6 =
11

6
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3. The approximate area is

A ≈ 1

3
[f(x1) + f(x2) + f(x3) + f(x4) + f(x5) + f(x6)]

A ≈ 1

3

[(
1

6

)2

+

(
3

6

)2

+

(
5

6

)2

+

(
7

6

)2

+

(
9

6

)2

+

(
11

6

)2
]

A ≈ 2.648

So only using 6 rectangles we got much closer to the true area than we did with 100

rectangles! I believe you need somewhere around 190 righthand rectangles for the same ap-

proximation as 6 midpoint rectangles!

4.2.2 Properties of the Definite Integral

When we defined the integral ∫ b

a

f(x)dx,

we have so far defined this when a < b. However, if b < a, the Riemann Sum definition still

works, but ∆x changes from b−a
n

to a−b
n

= −(b−a)
n

. Thus,

∫ b

a

f(x)dx = −
∫ a

b

f(x)dx.

Further, if a = b, then ∆x = b−b
n

= 0, and as such∫ b

b

f(x) dx = 0.

327



4.2 Definite Integral Brian E. Veitch

Further, to help evaluate a definite integral, we have the following four properties, as

long as f and g are continuous functions:

1.

∫ b

a

c dx = c(b− a), for any constant c

2.

∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx

3.

∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx for any constant c

4.

∫ b

a

(f(x)− g(x)) dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx

Proving these is a quite simple task. Property 1 follows from the fact that we are integrating

a constant height, and our figure would just be a rectangle – area of that is height c times

width b− a. Properties 2, 3 and 4 are all proven similarly, and we prove property 3 here:∫ b

a

cf(x)dx = lim
n→∞

n∑
i=1

(cf(xi)) ∆x

= lim
n→∞

c ·
n∑

i=1

f(xi)∆x

=c · lim
n→∞

n∑
i=1

f(xi)∆x

=c ·
∫ b

a

f(x)dx
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Thus, a constant, but ONLY a constant can be pulled out in front of an integral sign.

Example 4.14. Use the above properties to find∫ 7

2

3− 6x2dx.

Using the difference property, we have

∫ 7

2

3− 6x2 dx =

∫ 7

2

3 dx−
∫ 7

2

6x2 dx

By property 1, we have ∫ 7

2

3 dx = 3(7− 2) = 15.

Also, ∫ 7

2

6x2 dx = 6

∫ 7

2

x2 dx,

but to evaluate
∫ 7

2
x2dx, we need to treat this as a Riemann Sum, with ∆x =

7− 2

n
=

5

n

and xi = 2 +
5i

n
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∫ 7

2

x2dx = lim
n→∞

n∑
i=1

(
2 +

5i

n

)2

· 5

n

= lim
n→∞

5

n

n∑
i=1

4 +
20i

n
+

25i2

n2

= lim
n→∞

5

n

[
n∑

i=1

4 +
n∑

i=1

20i

n
+

n∑
i=1

25i2

n2

]

= lim
n→∞

5

n

(
4n+

20

n
· n(n+ 1)

2
+

25

n2
· n(n+ 1)(2n+ 1)

6

)
= lim

n→∞

5

n

(
4n+ 10(n+ 1) +

25(n+ 1)(2n+ 1)

6n

)
=5 · lim

n→∞
4 + 10 · n+ 1

n
+ 25 · 2n2 + 3n+ 1

6n2

=5 ·
(

4 + 10 +
25

3

)
=

335

3

Thus, we have ∫ 7

2

3− 6x2dx = 15− 6 ·
(

335

3

)
= 15− 670 = −655.

A fifth property involves combining the bounds on two integrals over the same function:

∫ c

a

f(x)dx+

∫ b

c

f(x)dx =

∫ b

a

f(x)dx,

which can easily be seen by the picture below:
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After all, if we want to find the area under f(x) from a to b, we can split it somewhere

in the middle and add those two areas.

Example 4.15. Suppose that∫ 10

2

f(x) dx = 13 and

∫ 7

2

f(x) dx = −3.

Find ∫ 10

7

f(x)ldx.

The answer here lies in a simple application from the following equation:

∫ 10

2

f(x) dx =

∫ 7

2

f(x) dx+

∫ 10

7

f(x) dx

13 = −3 +

∫ 10

7

f(x) dx

Therefore,

∫ 10

7

f(x) dx = 16
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This property is true regardless if a < c < b or not. It doesn’t matter at all. Any other

configuration would simply be a rearrangement of the variables. However, the following three

properties are only true for a < b:

6) If f(x) ≥ 0 for a ≤ x ≤ b, then
∫ b

a
f(x) dx ≥ 0

7) If f(x) ≥ g(x) for a ≤ x ≤ b, then
∫ b

a
f(x) dx ≥

∫ b

a
g(x) dx

8) If m ≤ f(x) ≤M for a ≤ x ≤ b, then m(b− a) ≤
∫ b

a
f(x) dx ≤M(b− a).

Property 6 implies a positive function gives positive areas. Property 7 says that a bigger

(higher) function will have larger area. Duh. Property 8 states that is a function is trapped

between two horizontal lines, and as such, the area under the curve is trapped between the

areas of two rectangles. None of these really need to be proven, but we we can demonstrate

pictorially:

Example 4.16. Estimate the value of ∫ 2

0

e−x
2

dx.

Take a look at the graph,
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From the graph, you can tell that it is a DECREASING function. You can also find this

out by the first derivative test. Unfortunately, we do not learn the derivative of exponential

functions until next semester.

You can see from the graph, our function has the smallest y value at x = 2, which is e−4.

It has its highest y-value at x = 0, which is e0 = 1. Therefore,

e−4 < e−x
2

< e0 = 1.

Thus, by property 8, we have

e−4(2− 0) ≤
∫ 2

0

e−x
2

dx ≤ 1(2− 0)

which gives

2e−4 ≤
∫ 2

0

e−x
2

dx ≤ 2.
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