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4.3 The Fundamental Theorem of Calculus

As you may have noticed, differentiation and integration are quite closely related. We finally

get to that connection, the connection at the heart of calculus now – differentiation arose

from the tangent line problem discussed way back when. Integration arose from the area

problem previously discussed. The main theorem of this section will allow us to find areas

under the curve without having to compute the limits of sums, which will be nice.

We first consider functions of the form

g(x) =

∫ x

a

f(t)dt,

where f(t) is a continuous function on the interval [a, b] and we also let x vary between a

and b – as x is a bound on the integration, this makes sense. Note that g depends only on

x, not on t. If we fix x as a number, then
∫ x
a
f(t)dt is a number as well.

If we suppose that f(x) ≥ 0, since a ≤ x, g(x) can be thought of as the area under the

curve f(x) over the interval [a, x], as the “area so far.”

Example 4.17. One of the things students will struggle with is how x as a bound works

and how it affects g(x). Let’s take a look at the following graph.
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4.3 The Fundamental Theorem of Calculus Brian E. Veitch

Let g(x) =

∫ x

0

f(x) dx. Find g(0), g(2), g(3), g(4), g(5), g(6), g(7).

1. g(0): This represents the area from 0 to 0 -

∫ 0

0

f(x) dx = 0. Therefore,

g(0) = 0

2. g(2): This represents the area from 0 to 2 -

∫ 2

0

f(x) dx

We’ll assume that f(x) = x2 on the interval [0, 2]. And we know from previous sections

that

∫ 2

0

x2 dx =
8

3
. Therefore,
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g(2) =
8

3

3. g(3): This represents the following region:

The region from 2 to 3 is a rectangle that has an area of 1 · 4 = 4. It’s a good idea to

think of g(x) as an accumulation of area (negative or positive) as x increases. So g(3)

equals all the area up to x = 3, which is

g(3) =
8

3
+ 4 =

20

3
≈ 6.67

4. g(4): This represents the following region:
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The region from 3 to 4 is a triangle with base = 1 and height = 4. Its area is
1

2
·1·4 = 2.

Therefore,

g(4) =
8

3
+ 4 + 2 =

26

3
≈ 8.67

Notice that when we previously moved over a unit, we added an area of 4. This time

we moved over a unit and added an area of 2. Even though the area function g(x)

increased, it didn’t increase as much. In other words, (and this is very important),

g(x) is increasing but concave down.

5. g(5): This represents the following region:

The region from 4 to 5 is a quarter of a circle with radius 1. So the area is
1

4
π ≈ 0.785.

But since it’s below the x-axis, it’s negative. Therefore,

g(5) =
8

3
+ 4 + 2− 0.785 = 7.88
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Notice that g(x) decreased. This should make sense since the area that we’re accumu-

lating now is negative.

6. g(6): This represents the following region:

The region from 5 to 6 is another quarter of a circle with radius 1. So the area is
1

4
π ≈ 0.785. But since it’s below the x-axis, it’s negative. Therefore,

g(6) =
8

3
+ 4 + 2− 0.785− 0.785 = 7.095

7. g(7): This represents the following region:
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The region from 6 to 7 is a triangle with area
1

2
.Therefore,

g(7) =
8

3
+ 4 + 2− 0.785− 0.785 +

1

2
= 7.595

If you were to track g(x) on a its own graph, it would look something like this

So where did g(x) reach its maximum? Does it have a local minimum? From the graph

it appears to have a maximum at x = 4. Again, if you think of g(x) as the accumulation of

area, g(x) begins accumulating negative area after x = 4. Therefore g(x) begins decreasing.

So what did we call a point where g(x) is increasing and then begins to decrease? Oh yeah...

a local maximum.

It also appears to have a local minimum at x = 6. What’s so special about x = 6? Notice

that this is when g(x) starts to accumulate positive area again. Therefore, g(x) changed from

decreasing to increasing and thus a local minimum.

It’s actually no coincidence that the area function g(x) reaches a local maximum / min-

imum when the original function f(x) intersects the x-axis. In fact, g(x) will have critical

values every time f(x) = 0. That’s odd. We know from previous chapters that g(x) has
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4.3 The Fundamental Theorem of Calculus Brian E. Veitch

critical values when g′(x) = 0. Could g′(x) = f(x)?

Before answering this EXTREMELY IMPORTANT question, let’s try one more ex-

ample.

Example 4.18. Suppose that f(x) = x. Then, find

g(x) =

∫ x

0

f(t) dt =

∫ x

0

t dt.

In order to find this, we still have to treat this as a limit of a Riemann Sum: we have

∆x =
x− 0

n
=
x

n
and xi = 0 + i

x

n
=
xi

n
.

g(x) = lim
n→∞

n∑
i=1

f(xi) ·∆x

= lim
n→∞

n∑
i=1

ix

n
· x
n

= lim
n→∞

x2

n2

n∑
i=1

i

=x2 · lim
n→∞

1

n2

(
n(n+ 1)

2

)
=x2 · lim

n→∞

n+ 1

2n

=
x2

2

Thus,

g(x) =
x2

2
.

Note something important here:

d

dx
g(x) =

d

dx

x2

2
=

2x

2
= x = f(x).
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In other words, g′ = f , and if we define g to be the integral of f , then the derivative of g

is f , so we view the anti-derivative AS the integral, and the interchangeability of the words

make sense here. We now look to see why this may generally be true.

Begin by considering any continuous function f such that f(x) ≥ 0. Then, define

g(x) =

∫ x

a

f(t)dt,

which can be interpreted as the area under the graph of f from a to x. In order to compute

g′(x) from the definition of a derivative, we first consider for h > 0, the numerator of a

difference quotient, g(x+ h)− g(x), which is obtained by subtracting areas:

for h quite small, we have approximately a rectangle, which has height f(x) and width

h:

g(x+ h)− g(x) ≈ hf(x),

so we have
g(x+ h)− g(x)

h
≈ f(x).

Thus, if we consider the limit of the above as h→ 0, we have

g′(x) = lim
h→0

g(x+ h)− g(x)

h
= f(x).

And thus, we have our theorem:
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4.3.1 The Fundamental Theorem of Calculus, Part 1:

If f is continuous on [a, b], then the function g defined by

g(x) =

∫ x

a

f(t)dt

where a ≤ x ≤ b is continuous on [a, b] and differentiable on (a, b), and g′(x) = f(x).

Proof. If we let x and x+ h in the interval (a, b), then

g(x+ h)− g(x) =

∫ x+h

a

f(t)dt−
∫ x

a

f(t)dt

=

(∫ x

a

f(t)dt+

∫ x+h

x

f(t)dt

)
−
∫ x

a

f(t)dt

=

∫ x+h

x

f(t)dt

and thus, for h 6= 0, we have

g(x+ h)− g(x)

h
=

1

h

∫ x+h

x

f(t)dt.

In order to make life a little simpler, we consider only h > 0 now. Since f is continuous on

[x, x + h], we apply the Extreme Value Theorem and have that there are numbers u and v

in [x, x+ h] such that f(u) = m and f(v) = M , where m and M are the absolute minimum

and maximum values, respectively, of f on [x, x+ h]. Then, we have

mh ≤
∫ x+h

x

f(t)dt ≤Mh,

which is to say

f(u)h ≤
∫ x+h

x

f(t)dt ≤ f(v)h.

Now, since h > 0, we can divide by h without reversing the inequalities:

f(u) ≤ 1

h

∫ x+h

x

f(t)dt ≤ f(v).

We can replace the middle of this inequality by the interior of a difference quotient, from an

earlier equation:

f(u) ≤ g(x+ h)− g(x)

h
≤ f(v).
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(We can obtain a similar inequality if h < 0 as well.) From here, we take a limit as h → 0.

Since the interval [x, x + h] is squeezed down to a single point, we have u → x and v → x.

This gives

lim
h→0

f(u) = lim
u→x

f(u) = f(x),

and

lim
h→0

f(v) = lim
v→x

f(v) = f(x).

Thus, by the Squeeze Theorem, we have

g′ = lim
h→0

g(x+ h)− g(x)

h
= f(x).

Lastly, if x = a or x = b, then we can view the above equation as a one-sided limit, as we

would let h→ 0±, to show that g is continuous, albeit not differentiable, on (a, b).

We can rewrite part 1 of the FTC using Leibniz notation as well, and we have

d

dx

∫ x

a

f(t)dt = f(x),

for a continuous f – meaning that the derivative of an integral (with variable bounds) is

the original function.

You just saw a formal proof of the FTC, I. Proofs can be very tedious and difficult to

follow. It’s ok if you don’t follow the formal one. The explanation that lead up to stating the

FTC, I is sufficient. You will see the formal proof again in an upper level advanced calculus

course. Have fun with that math majors.

Example 4.19. Find
d

dx

∫ x

1

√
t2 − t+ 1 cos(t) dt.
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Since f(t) =
√
t2 − t+ 1 cos(t), which is continuous for t ≥ 1, Part 1 of the FTC gives

d

dx

∫ x

1

√
t2 − t+ 1 cos(t) dt =

√
x2 − x+ 1 cos(x).

Example 4.20. Find
d

dx

∫ 4

x

e−t
2

dt

Note this isn’t in the correct form. The bound x must be the upper bound. We use one

of our previous integral properties to rearrange the bounds.

d

dx

(
−
∫ x

4

e−t
2

dt

)
= − d

dx

(∫ x

4

e−t
2

dt

)
= −e−x2

Example 4.21. Consider the function, used often in actuarial work and statistics, given by

S(x) =

∫ x

0

sin

(
πt2

2

)
dt.

By Part 1 of the FTC, we can differentiate it, so that

S ′(x) = sin

(
πx2

2

)
.

S(x) is a funny function to graph – I recommend you do it sometime, if you have access to

Maple or some other non-calculator software

344



4.3 The Fundamental Theorem of Calculus Brian E. Veitch

Example 4.22. Find

d

dx

∫ x3

2

sin(2t)dt.

This is a bit more complicated, and requires more then just Part 1 of the FTC – it

requires the Chain rule as well. Begin by letting u = x3, and we know that du
dx

= 3x2. Then,

d

dx

∫ x3

2

sin(2t) dt =
d

dx

∫ u

2

sin(2t) dt

=
d

du

(∫ u

2

sin(2t) dt

)
du

dx

= sin(2u)
du

dx

= sin(2x3) · 3x2

If you’re not a fan of this way, we can approach this a little differently. In order to do this

same problem, what was our biggest hurdle? It was the bound x3. So instead, let’s define

g(x) =

∫ x

2

sin(2t) dt

That way, we know g′(x) =
d

dx

∫ x

2

sin(2t) dt = sin(2x).

So now consider g(x3). Note that g(x3) =

∫ x3

2

sin(2t) dt, which is what we’re trying to

work with.

What’s
d

dx
[g(x3)]?

d

dx

[
g(x3)

]
= g′(x3) · 3x2 from the chain rule
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Since g′(x) = sin(2x), we know g′(x3) = sin(2(x3)). Therefore,

d

dx
g(x3) =

d

dx

∫ x3

2

sin(2t) dt = sin(2x3) · 3x2

Either method works. Choose one that you’re comfortable with and go with it. Both are

a bit weird at first, so try to work with the one that feels more natural to you.

We now come to the second part, the better part, of the FTC, which lets us avoid calcu-

lating integrals as limits of Riemann Sums, which is a long and painful process.

4.3.2 Fundamental Theorem of Calculus Part 2:

If f is continuous on [a, b], then ∫ b

a

f(x) dx = F (b)− F (a)

where F is any antiderivative of f – where F is a function such that F ′ = f .

Proof. We start by defining

g(x) =

∫ x

a

f(t)dt,

and form Part 1 of the FTC, we know that g′(x) = f(x). Thus, g is an anti-derivative of

f . If F is any other anti-derivative of f , then we had a result that said that g and F differ

only by a constant, thus

F (x) = g(x) + c,
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for some constant c and for x ∈ (a, b) (which is where g is differentiable). This holds for

any x on a < x < b. However, both F and g are continuous on [a, b], and we take limits of

both sides of the above equation (as x → a+ and x → b−), we also see that this is true at

x = a and x = b, so the equation holds for x ∈ [a, b].

If we now let x = a in the original formula for g(x), we get

g(a) =

∫ a

a

f(t)dt = 0

by one of our properties of integration from earlier (same bounds). Then, we can apply the

equation F (x) = g(x) + c with x = a and x = b and we get

F (b)− F (a) = (g(b) + c)− (g(a) + c)

=

∫ b

a

f(t)dt+ c− 0− c

=

∫ b

a

f(t)dt

Thus, by Part 2 of the FTC, if we know an anti-derivative of f(x), we can easily eval-

uate
∫ b
a
f(x)dx simply by evaluating that anti-derivative at the bounds of integration and

subtracting. It may seem a little strange that all that rectangle summing and limiting can

be taken care of simply by evaluating a different function and two points, but such is the

power of the integral.

To understand better why it works, suppose that v(t) is the velocity of an object at

time t, and s(t) is the position of the object at time t, then v(t) = s′(t). Thus, s is an

anti-derivative of v, and as such, we can evaluate a certain pesky integral rather easily:∫ b

a

v(t)dt = s(b)− s(a),

by Part 2 of the FTC.
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Example 4.23. Evaluate ∫ 7

3

x7 dx.

Remember this problem? We know that f(x) = x7 is continuous everywhere, so it is

definitely continuous on [2, 7]. So what’s an anti-derivative of x7. Why not use the easiest

one, F (x) =
1

8
x8. Thus.

∫ 7

3

x7 dx = F (7)− F (3) =
1

8
(7)8 − 1

8
(3)8 = 719780.

Note that we could have used ANY anti-derivative, so we just went with the easiest. The

same answer would have been obtained with F (x) =
1

8
x8 + c for any c, as we would’ve had

∫ 7

3

x7dx = F (7)− F (3) =

(
1

8
(7)8 + c

)
−
(

1

8
(3)8 + c

)
=

1

8
(7)8 − 1

8
(3)8.

As a shortcut notation in the evaluation process for integration, we say that

F (x)|ba = F (b)− F (a).

We can write the equation in Part 2 of the FTC as

∫ b

a

f(x) dx = F (x)|ba ,

where F ′ = f .

Example 4.24. Find the area under y = x3 − 3 from x = 0 to x = 2.
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An antiderivative of y = x3 − 3 we can use is

F (x) =
1

4
x4 − 3x.

We find the area using Part 2 of the FTC:

A =

∫ 2

0

x3 − 3x dx =
1

4
x4 − 3x

∣∣∣∣2
0

=

(
1

4
24 − 3(2)

)
−
(

1

4
04 − 3(0)

)
= −2

Example 4.25. Find the area under y = sin(x) from x = 0 to x = c, where 0 ≤ c ≤ π.

We know that the derivative of cos(x) = − sin(x), so to get out just sin(x), we let

F (x) = − cos(x). Then

d

dx
− cos(x) = − (− sin(x)) = sin(x) = f(x).

Then ∫ c

0

sin(x)dx = − cos(x)|c0 = − cos(c) + cos(0) = 1− cos(c).

Thus, really, the integral of the sine function just gives back the cosine function at c,

with a bit of arithmetic involved.

Further, by letting c = π, we see that∫ π

0

sin(x)dx = 1− cos(π) = 2.

Example 4.26. Find

∫ 9

0

√
t(1 + t) dt
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First, we don’t have an anti-derivative for a product of two functions. And you can’t

just anti-differentiate each and multiply them together. That’s an easy way to earn 0 points.

Integration is a bit more strict than differentiation. At this point, we only know the power

rule,

∫
xn dx =

xn+1

n+ 1
+ c

So we need to multiply out
√
t(1 + t)

∫ 9

0

√
t(1 + t) dt =

∫ 9

0

√
t+ t3/2 dt

=

∫ 9

0

t1/2 + t3/2 dt

=
t3/2

3/2
+
t5/2

5/2

∣∣∣∣9
0

=
2

3
t3/2 +

2

5
t5/2
∣∣∣∣9
0

=

(
2

3
(9)3/2 +

2

5
(9)5/2

)
−
(

2

3
(0)3/2 +

2

5
(0)5/2

)
= 115.2

Example 4.27. Find ∫ 3

−1

1

x4
dx.

Well since f(x) = x−4, we have the anti-derivative

F (x) =
x−3

−3
=
−1

3x3
.

Then, FTC Part 2 gives ∫ 3

−1

1

x4
dx =

−1

3 · 27
− −1

−3
=
−28

81
.
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Wait a minute, that makes no sense! We have a function f(x) ≥ 0 for all values of x!

WTF? Well, remember the conditions of FTC Part 2 – we need the function to be continuous

over [a, b], and boy, oh boy do we have a discontinuity at x = 0, which is smack in the middle

of this interval. And it’s a hell of a discontinuity – it’s an infinite discontinuity, one we cannot

resolve in any way, shape or form. We cannot integrate the above function:∫ 3

−1

1

x4
dx

does not exist. Too bad, so sad.

Just to be clear, the anti-derivative to f(x) =
1

x4
is − 1

3x3
. But we just can’t evaluate it

using the current endpoints.

Since the FTC has two parts, we look at them together to end this section. Recall that

the FTC states that if f is continuous on [a, b],

1. If g(x) =

∫ x

a

f(t) dt, then g′(x) = f(x).

2.

∫ b

a

f(x) dx = F (b)− F (a), for any anti-derivative F (x) of f(x).

Part 1 can be written as
d

dx

∫ x

a

f(t)dt = f(x),

which says that if we integrate and then differentiate f , we get back f . Also, since F ′(x) =

f(x) from Part 2, we write part 2 as∫ b

a

F ′(x)dx = F (b)− F (a).
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Here, if we take a function, differentiate it, then integrate, we get the original function

F back, but in the form of a difference between two numbers. Thus, by combining both

parts of the FTC, we see that differentiation and integration are inverse functions of each

other. And, armed with this little tidbit of knowledge, we will dive into integration tricks,

shortcuts and the realization that life isn’t as easy as it was with differentiation.
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