3.5 Summary of Curve Sketching

Follow these steps to sketch the curve.

- 1. Domain of f(x)
- 2. x and y intercepts
 - (a) x-intercepts occur when f(x) = 0
 - (b) y-intercept occurs when x = 0
- 3. Symmetry: Is it even or odd or neither. This usually isn't of help.

If f(-x) = -f(x), then f(x) is symmetric about the origin.

If f(-x) = f(x), then f(x) is symmetric about the *y*-axis.

- 4. Find any vertical or horizontal asymptotes.
 - (a) Vertical Asymptote: Find all x-values where $\lim_{x\to a} f(x) = \pm \infty$. Usually when the denominator is 0 and the numerator is not 0
 - (b) Horizontal Aymptotes: Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$.

5. Find f'(x)

- (a) Find the critical values, all x-values where f'(x) = 0 or when f'(x) does not exist.
- (b) Find increasing / decreasing intervals using numberline
- (c) Find local maximums / minimums (if any exist). Remember to write them as points.
 - i. Local Max at x = c: f'(x) changes from (+) to (-) at x = c.

ii. Local Min at x = c: f'(x) changes from (-) to (+) at x = c.

- (d) Plot them
- 6. Find f''(x)
 - (a) Find all x-values where f''(x) = 0 or when f''(x) does not exist.

- (b) Find intervals of concavity using the number line
- (c) Find points of inflection
 - i. Must be a place where concavity changes
 - ii. The point must exist (i.e, can't be an asymptote, discontinuity)
- (d) Plot them
- 7. Sketch

Example 3.17. Sketch $y = \frac{x}{\sqrt{x^2 + 1}}$

It's probably best to rewrite f(x) as $f(x) = \frac{x}{(x^2+1)^{1/2}}$

- 1. Domain: There are no domain issues.
- 2. Intercepts:

y - intercept: (0, 0)x - intercept: (0, 0)

3. Symmetry:

$$f(-x) = \frac{(-x)}{\sqrt{(-x)^2 + 1}} = \frac{-x}{\sqrt{x^2 + 1}} = -f(x)$$

This is an odd function. This means once we finish sketching, if the graph is not symmetric about the origin we did something wrong.

- 4. Asymptotes:
 - (a) Horizontal Asymptote:

$$\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} = \lim_{x \to \infty} \frac{x}{\sqrt{x^2}}$$
$$= \lim_{x \to \infty} \frac{x}{x}$$
$$= 1$$

$$\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1}} = \lim_{x \to -\infty} \frac{x}{\sqrt{x^2}}$$
$$= \lim_{x \to \infty} \frac{x}{-x}$$
$$= -1$$

Recall:
$$\sqrt{x^2} = \begin{cases} x, & x > 0 \\ -x, & x < 0 \end{cases}$$

(b) Vertical Asymptote:

There are none. Nothing makes $\sqrt{x^2 + 1} = 0$.

5. Find y'. Let's use the Quotient Rule.

$$y' = \frac{(x^2+1)^{1/2} \cdot (1) - x \cdot \frac{1}{2}(x^2+1)^{-1/2} \cdot 2x}{[(x^2+1)^{1/2}]^2}$$

= $\frac{(x^2+1)^{1/2} - x^2(x^2+1)^{-1/2}}{x^2+1}$
= $\frac{(x^2+1)^{-1/2}[(x^2+1) - x^2]}{x^2+1}$
= $\frac{(x^2+1)^{-1/2}}{x^2+1}$
= $\frac{1}{(x^2+1)^{3/2}}$

Critical Values: There are no critical values.

Since there are no critical values. Check any point in the domain, the graph is increasing the entire time.

Increasing: $(-\infty, \infty)$

6. Find y'': Rewrite $y' = (x^2 + 1)^{-3/2}$

$$y'' = -\frac{3}{2}(x^2 + 1)^{-5/2} \cdot (2x)$$
$$= \frac{-3x}{(x^2 + 1)^{5/2}}$$

Critical Values: x = 0

Concave Up: $(-\infty, 0)$

Concave Down: $(0, \infty)$

Point of Inflection: (0,0)

7. Sketch the graph

Example 3.18. Sketch $y = 2\sqrt{x} - x$

- 1. Domain: $x \ge 0$
- 2. Intercepts:
 - (a) y-intercept: (0,0)
 - (b) *x*-intercepts: Set $2\sqrt{x} x = 0$

$$2\sqrt{x} - x = 0$$

$$2\sqrt{x} = x$$

$$(2\sqrt{x})^2 = (x)^2$$

$$4x = x^2$$

$$0 = x^2 - 4x$$

$$0 = x(x - 4)$$

which gives us x-intercepts (0,0) and (4,0).

- 3. There is no symmetry.
- 4. Asymptotes:
 - (a) There are no vertical asymptotes.
 - (b) There are no horizontal asymptotes.

$$\lim_{x \to \infty} 2\sqrt{x} - x = -\infty$$

We already did an example of this type of limit. Use that technique to show it's $-\infty$.

5. Find y'

$$y' = 2 \cdot \frac{1}{2}x^{-1/2} - 1$$

= $x^{-1/2} - 1$
= $\frac{1}{\sqrt{x}} - 1$

We have a critical value at x = 0 because y' does not exist when x = 0. Now we need to solve y' = 0

$$\frac{1}{\sqrt{x}} - 1 = 0$$
$$\frac{1}{\sqrt{x}} = 1$$
$$1 = \sqrt{x}$$
$$1 = x$$

The other critical value is at x = 1.

6. Use the number line to determine where y is increasing or decreasing.

Note, we did not have to pick a number in the region less than 0 since that region is not in the domain.

Increasing: (0,1)

Decreasing: $(1, \infty)$

Local Maximum: (1, 1)

Local Minimum: None

7. Find y''. First, rewrite y' as $y' = x^{-1/2} - 1$.

$$y'' = -\frac{1}{2}x^{-3/2}$$
$$y'' = -\frac{1}{2x^{3/2}}$$

There is a critical value at x = 0.

8. Use the number line to determine concavity.

Concave Down: $(0, \infty)$

Concave Up: Never

No points of inflection

9. Sketch the graph

Example 3.19. Sketch $y = 1 + \frac{1}{x} + \frac{1}{x^2}$

- 1. Domain: $x \neq 0$
- 2. Intercepts:
 - (a) y-intercept: None, because $x \neq 0$
 - (b) x-intercept(s): Let's set y = 0

$$1 + \frac{1}{x} + \frac{1}{x^2} = 0$$

Multiply through by x^2

$$x^2 + x + 1 = 0$$

There are no solutions to this equation. This means y does not have any x-intercepts.

- 3. There is no symmetry.
- 4. Asymptotes:
 - (a) Vertical Asymptote: x = 0
 - (b) Horizontal Asymptote:

$$\lim_{x \to \infty} 1 + \frac{1}{x} + \frac{1}{x^2} = 1$$

$$\lim_{x \to -\infty} 1 + \frac{1}{x} + \frac{1}{x^2} = 1$$

So there is one horizontal asymptote at y = 1.

5. Find y'. Rewrite y as $y = 1 + x^{-1} + x^{-2}$.

$$y' = -x^{-2} - 2x^{-3}$$

To find critical values, we need to find out when y' = 0 or y' does not exist.

We see y' does not exist when x = 0. Next, let's set y' = 0

$$-x^{-2} - 2x^{-3} = 0$$
$$-x^{-3}(x+2) = 0$$

So we have critical values at x = 0 and x = -2.

6. Use the number line to determine when y is increasing / decreasing.

Increasing: (-2,0)

Decreasing: $(-\infty, -2)$ and $(0, \infty)$

Local Minimum: $(-2, \frac{3}{4})$

There is no local maximum. The number line indicates there would be one at x = 0. But recall that x = 0 is not in the domain.

7. Find y''

$$y'' = 2x^{-3} + 6x^{-4}$$

Critical values occur when y'' = 0 and y'' does not exist. You can see y'' does not exist when x = 0.

$$2x^{-3} + 6x^{-4} = 0$$
$$2x^{-4} (x+3) = 0$$

So we have critical values at x = 0 and x = -3

8. Use the number line to determine concavity.

Concave Down: $(-\infty, -3)$

Concave Up: (-3, 0) and $(0, \infty)$. You cannot write $(-3, \infty)$ because $x \neq 0$. We have one point of inflection at $(-3, \frac{7}{9})$.

9. Time to sketch!

